收稿日期: 2017-04-21
修回日期: 2017-06-16
网络出版日期: 2017-06-16
基金资助
国家"973"计划(613221);国家自然科学基金(11572341);国家重点研发计划(2016YFB0200704)
Numerical simulation methods for 2DOF coupled oscillations of aircraft
Received date: 2017-04-21
Revised date: 2017-06-16
Online published: 2017-06-16
Supported by
National Basic Research Program of China (613221);National Natural Science Foundation of China (11572341); National Key Research and Development Program (2016YFB0200704)
针对模拟双自由度(2DOF)运动的"PQR"强迫振荡试验装置,通过坐标变换,将机构运动转化为空间欧拉角进行表示,实现对机构俯仰/偏航、俯仰/滚转和偏航/滚转等3种耦合运动的统一描述,采用预定运动轨迹的动网格计算技术,构造了基于非定常雷诺平均Navier-Stokes (URANS)方程的飞行器双自由度振荡数值模拟方法。围绕某复杂构型飞行器低速流动,在模型迎角10°、滚转角±40°、偏航角±40°振荡预设条件下分别对单自由度偏航、滚转振荡和双自由度偏航/滚转振荡进行了模拟,得到的气动系数迟滞回线在形态和量值上与风洞试验结果吻合,证明当前方法可以作为飞行器复杂耦合运动的一种有效研究手段。针对偏航/滚转耦合振荡,从运动形式和气动特性上与单独偏航、滚转运动进行了对比分析,结果表明,耦合运动在气流角、绕体轴的旋转角速度等方面与单自由度叠加效果不同,力矩系数迟滞回线存在曲线交叉的现象,表现出与单自由度振荡不同的阻尼特性。在当前模拟状态下,偏航/滚转振荡流场以横向分离涡运动为主要特征,可以推测大迎角情况下纵横向分离涡流动结构更加复杂,耦合作用更强,需要进一步在分离流模拟方法上开展研究。
肖中云 , 刘刚 , 江雄 , 王建涛 . 飞行器双自由度耦合振荡的数值模拟方法[J]. 航空学报, 2017 , 38(11) : 121345 -121345 . DOI: 10.7527/S1000-6893.2017.121345
Focusing on the "PQR" forced oscillation test apparatus for modeling Two-Degree-of-Freedom (2DOF) motions, coordinate transformation is performed to obtain unified Euler angle descriptions of the pitch/yaw, pitch/roll and yaw/roll coupled motions. Based on moving grids for prescribed motion and Unsteady Reynolds Averaged Navier-Stokes (URANS) equations, a numerical algorithm is developed to simulate coupled oscillation of aircrafts. Surrounding low speed flows of a complex aircraft, single-degree oscillations of yaw and roll and yaw/roll coupled oscillation are respectively computed at angle of attack of 10° and amplitude of oscillation of 40°. The numerical results agree well with the experimental data, showing that current algorithm has promising potentials in simulation of complicated coupled motions of aircrafts. As for moving process and aerodynamics, the yaw/roll coupled motion is compared with the super position of single yaw and roll oscillations, which shows that differences exist in body angular velocities and flow angles,and the moment hysteresis curve of the yaw/roll coupled motion shows crossings, indicating totally different damping characteristics from single DOF oscillation. In current yaw and roll oscillations, flows are characterized by laterally separated vortexes. It is assumed that at high angle of attack, when flows are more complicated with lateral and longitudinal vortexes and strong coupled effects, more studies should be done on numerical methods of highly separated flows.
Key words: 2DOF; large amplitude oscillation; coupled motion; unsteady; numerical simulation
[1] NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2):185-248.
[2] KRAMER B R. Experimental evaluation of superposition techniques applied to dynamic aerodynamics:AIAA-2002-0700[R]. Reston, VA:AIAA, 2002.
[3] LAN C E, LI J, YAU W, et al. Longitudinal and lateral-directional coupling effects on nonlinear unsteady aeodynamic modeling from flight data:AIAA-2002-4804[R]. Reston, VA:AIAA, 2002.
[4] WANG Z, LAN C E, BRANDON J M. Fuzzy logic modeling of lateral-directional unsteady aerodynamics:AIAA-1999-4012[R]. Reston, VA:AIAA, 1999.
[5] JENKINS J E. Nonlinear aerodynamic characteristics of a 65 degree delta wing in rolling motion:Implications for testing and flight mechanics analysis:AIAA-1997-0742[R].Reston, VA:AIAA, 1997.
[6] OWENS D B, BRANDON J M, CROOM M A, et al. Overview of dynamic test techniques for flight dynamics research at NASA LaRC:AIAA-2006-3146[R]. Reston, VA:AIAA, 2006.
[7] GILLARD W J. AFRL F-22 dynamic wind tunnel test results:AIAA-1999-04015[R]. Reston, VA:AIAA, 1999.
[8] 李伟. 飞机大振幅动态实验及其非定常气动特性研究[D]. 南京:南京航空航天大学, 2008. LI W. Unsteady aerodynamic experiments and characteristics for the aircraft oscillation in large amplitude[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008(in Chinese).
[9] 李周复. 风洞特种试验技术[M]. 北京:航空工业出版社, 2010. LI Z F. Special test technology in wind tunnel[M]. Beijing:Aviation Industry Press, 2010(in Chinese).
[10] 黄达, 吴根兴. 三角翼俯仰滚转耦合运动气动特性研究[J]. 航空学报, 1999, 20(6):485-488. HUANG D, WU G X. Investigation of unsteady aerodynamic characteristics for a delta wing oscillating in large amplitude pitching roll motion[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(6):485-488(in Chinese).
[11] 黄达, 吴根兴. 飞机偏航-滚转耦合运动非定常空气动力实验[J]. 南京航空航天大学学报, 2005, 37(4):408-411. HUANG D, WU G X. Experiment on fighter oscillating in large amplitude yaw-roll motion[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(4):408-411(in chinese).
[12] HUANG D, WU G X. Unsteady rolling moment characteristics for fighter oscillating with yawing-rolling coupled motion[J]. Journal of Aircraft, 2006, 43(5):1570-1573.
[13] 刘春明, 赵志军, 卜忱. 低速风洞双自由度大幅振荡试验技术[J]. 航空学报, 2016, 37(8):2417-2425. LIU C M, ZHAO Z J, BU C, et al. Double degree-of-freedom large amplitude oscillation test technology in low speed wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2417-2425(in Chinese).
[14] 杨文, 卜忱, 眭建军. 某复杂构型飞机偏航-滚转耦合运动非定常气动力特性实验研究[J]. 实验流体力学, 2016, 30(3):61-65. YANG W, BU C, GUI J J. Investigation of the unsteady aerodynamic characteristics of a fighter with complex configuration undergoing yaw-roll coupling oscillation motion[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3):61-65(in Chinese).
[15] 孙海生, 张海酉, 刘志涛. 大迎角非定常气动力建模方法研究[J]. 空气动力学学报, 2011, 29(6):733-737. SUN H S, ZHANG H Y, LIU Z T. Comparative evaluation of unsteady aerodynamics modeling approaches at high angle of attack[J]. Acta Aerodynamica Sinica, 2011, 29(6):733-737(in Chinese).
[16] 汪清, 钱炜祺, 丁娣. 飞机大迎角非定常气动力建模研究进展[J]. 航空学报, 2016, 37(8):2332-2347. WANG Q, QIAN W Q, DING D. A review of unsteady aeeodynamic modeling of aircrafts at high angles of attack[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2332-2347(in Chinese).
[17] 史志伟, 黄达, 吴根兴, 等. 耦合运动非定常气动模型对飞机飞行特性仿真的影响[J]. 航空学报, 2008, 29(6):1424-1428. SHI Z W, HUANG D, WU G X, et al. Effects of coupled motion unsteady aerodynamic model on flight characteristics simulation of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1424-1428(in Chinese).
[18] JANTZEN R, TAIRA K. Aerodynamic force modeling for unsteady wing maneuvers:AIAA-2014-0223[R]. Reston, VA:AIAA, 2014.
[19] MICHAEL V L. The high frequency, high-amplitude pitch problem:Airfoils, plates and wings:AIAA-2009-3686[R]. Reston, VA:AIAA, 2009.
[20] 张帆, 曹喜滨, 邹经湘. 一种新的全角度四元数与欧拉角的转换算法[J]. 南京理工大学学报, 2002, 26(4):376-380. ZHANG F, CAO X B, ZOU J X. A new large-scale transformation algorithm of quaternion to Euler angle[J]. Journal of Nanjing University of Science and Technology, 2002, 26(4):376-380(in Chinese).
[21] WANG F J, CHEN L. Numerical prediction of stability derivatives for complex configurations[J]. Procedia Engineering, 2015, 99(1):1561-1575.
/
〈 | 〉 |