航空发动机内流与传热技术发展专栏

涡轴/涡桨发动机压气机流动特点与发展趋势

  • 银越千 ,
  • 金海良 ,
  • 陈璇
展开
  • 中国航发湖南动力机械研究所, 株洲 412002

收稿日期: 2016-12-02

  修回日期: 2017-04-17

  网络出版日期: 2017-06-12

基金资助

航空科学基金(2015ZB08006)

Flow features and developing trends of compressor in turboshaft/turboprop engine

  • YIN Yueqian ,
  • JIN Hailiang ,
  • CHEN Xuan
Expand
  • AECC Hunan Powerplant Research Institute, Zhuzhou 412002, China

Received date: 2016-12-02

  Revised date: 2017-04-17

  Online published: 2017-06-12

Supported by

Aeronautical Science Foundation of China (2015ZB08006)

摘要

首先,介绍了涡轴/涡桨发动机的现状与发展历程以及涡轴/涡桨发动机压气机的主要结构形式与技术特点。其次,从压气机的内部流动特点角度,详细介绍了涡轴/涡桨发动机组合压气机中的轴流级相比大推力涡扇发动机轴流压气机的内部流动特点与流场改善措施,及涡轴/涡桨发动机普遍采用的离心压气机中离心叶轮和扩压器的内部流动及匹配的特点。然后,对涡轴/涡桨发动机压气机内部流动失稳和扩稳措施进行了分析。最后,对未来的涡轴/涡桨发动机压气机的发展趋势进行了展望。

本文引用格式

银越千 , 金海良 , 陈璇 . 涡轴/涡桨发动机压气机流动特点与发展趋势[J]. 航空学报, 2017 , 38(9) : 521011 -521011 . DOI: 10.7527/S1000-6893.2017.621011

Abstract

First, this paper briefly introduces the present situation and development history of the turboshaft/turboprop engine, as well as the main structural forms and technical features of the compressor in the turboshaft/turboprop engine. Second, the axial compressor of the combined compression system in this type of aero engine is different from high thrust turbofan engine. The special inner flow features and improvement measures of the axial compressor in the turboshaft/turboprop engine are given. The inner flow features of the impeller and diffuser, which are the typical section of the centrifugal compressor, are also discussed. Then, the instability process and stall margin enhancement in the compressor of the turboshaft/turboprop engine is analyzed. The developing trends of the turboshaft/turboprop engine in the future are given.

参考文献

[1] 张彦重. 中国直升机运输机的未来发展[J]. 中国工程科学, 2002, 4(8): 1-7. ZHANG Y Z. Developmental trend of helicopter and military transport in the future[J]. Engineering Sciences, 2002, 4(8): 1-7 (in Chinese).
[2] 王适存. 面向21世纪的直升机发展[J]. 南京航空航天大学学报, 1997, 29(6): 601-606. WANG S C. Developmental trend of helicopter in 21st century[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1997, 29(6): 601-606 (in Chinese).
[3] 侯树荣, 董彦斌, 刘圣宇, 等. 军用运输机在现代战争中的作用及发展趋势[J].吉林工程技术师范学院学报, 2010, 26(4): 69-71. HOU S R, DONG Y B, LIU S Y, et al. Function and developmental trend of military transport in modern war[J]. Journal of Jilin Teachers Institute of Engineering and Technology, 2010, 26(4): 69-71 (in Chinese).
[4] 周新新, 陈玉春, 樊巍, 等. 涡轴发动机技术参数与发展趋势评估[J]. 航空工程进展, 2013, 4(2): 150-157. ZHOU X X, CHEN Y C, FAN W, et al. Evaluation of technical parameters and developing trends for turboshaft engines[J]. Advances in Aeronautical Science and Engineering, 2013, 4(2): 150-157 (in Chinese).
[5] 钱笃元, 周拜豪. 航空发动机设计手册: 第八册[M]. 北京: 航空工业出版社, 2000. QIAN D Y, ZHOU B H. Aero engine design handbook: The eighth volume[M]. Beijing: Aviation Industry Press, 2000 (in Chinese).
[6] 周盛. 叶轮机械新一代流型探索[R]. 国家自然科学基金重大项目建议书, 1992. ZHOU S. New generation of flow pattern in turbomachinery[R]. Major Program of the National Natural Science Foundation of China, 1992 (in Chinese).
[7] JEFF L H, ROBERT A D. Advanced small turboshaft compressor (ASTC) performance and range investigation[R]. Indianapolis: Allison Engine Company, 1997.
[8] 李湘君, 楚武利. 高负荷跨声速轴流压气机的叶型优化设计[J]. 计算机仿真, 2012, 29(7): 75-79. LI X J, CHU W L. Optimization design for high-loading transonic axial compressor blade profile[J]. Computer Simulation, 2012, 29(7): 75-79 (in Chinese).
[9] WU Y H, CHU W L. Behavior of tip leakage in an axial flow compressor rotor: GT2006-90399[R]. New York: ASME, 2006.
[10] DOMENICO B, FRANCO R. Prediction of tip-leakage flow in axial flow compressor with second moment closure: GT2006-90535[R]. New York: ASME, 2006.
[11] ZHANG H H, DENG X Y. A study on the mechanism of tip leakage flow unsteadiness in an isolated compressor rotor: GT2006-91123[R]. New York: ASME, 2006.
[12] 陈璇, 吴仕钰. 级环境下高负荷跨声压气机优化设计[J]. 南华动力学报, 2016(1): 32-37. CHEN X, WU S Y. Optimization design for high-loading transonic compressor under stage environment[J]. Journal of Nanhua Power, 2016(1): 32-37 (in Chinese).
[13] 徐国华, 张锦纶. 某组合压气机改进设计[J]. 南华动力学报, 2016(3): 14-18. XU G H, ZHANG J L. Optimization design for a combined compressor[J]. Journal of Nanhua Power, 2016(3): 14-18 (in Chinese).
[14] CUMPSTY N A. Compressor aerodynamics[M]. Malabar: Krieger Publishing Company, 2004.
[15] WANG Z C, LAI S K. Aerodynamic calculation of turbine stator cascade with curvilinear leaned blades and some experimental results: IAA Paper No.A81-29072[R]. 1981.
[16] 张华良. 采用叶片弯/掠及附面层抽吸控制扩压叶栅内涡结构的研究[D]. 哈尔滨: 哈尔滨工业大学, 2006. ZHANG H L. Investigation on application of dihedral/swept blade and boundary layer suction to control vortex configuration in compressor cascades[D]. Harbin: Harbin Institute of Technology, 2006 (in Chinese).
[17] LI L T. Effect of vortex generator jet on flow separations in bowed compressor cascades: GT2015-42308[R]. New York: ASME, 2015.
[18] TAKAHASHI Y, HAMATAKE H,KATOH Y, et al. Experimental and numerical investigations of endwall flow in a bowed compressor cascade: AIAA-2005-3638[R]. Reston, VA: AIAA, 2005.
[19] YANG C W, LU X G. Numerical investigation of a camtilevered compressor stator at varting clearance sizes: GT2015-42124[R]. New York: ASME, 2015.
[20] 王立志, 阳诚武. 级负荷系数0.42的小流量轴流压气机设计与试验验证[J]. 航空发动机, 2016, 42(3): 54-60. WANG L Z, YANG C W. Design and measurements for a small flow rate axial compressor with stage work coefficient of 0.42[J]. Aeroengine, 2016, 42(3): 54-60 (in Chinese).
[21] WEHLE P, WENGER U. Development of the rolls-royce 10 stage high pressure compressor family: ISABE 2009-1300[R]. 2009.
[22] KLINGER H, LAZIK W, ROLLS-ROYCE T W. The engine 3E core engine: GT2008-50679[R]. New York: ASME, 2008.
[23] HIROTAKA H. Detailed flow study of mach number 1.6 high tarnsonic flow in a pressure ratio 11 centrifugal compressor impeller: GT2007-27694[R]. New York: ASME, 2007.
[24] 孙志刚, 胡良军. Eckardt叶轮二次流与射流尾迹结构研究[J]. 工程热物理学报, 2011, 32(12): 2017-2021. SUN Z G, HU L J. Investigation on the secondary flow structures and jet-wake structure of the Eckardt’s impeller[J]. Journal of Engineering Thermophysics, 2011, 32(12): 2017-2021 (in Chinese).
[25] MICHELE M, FILIPPO R. Numerical analysis of the vaned diffuser of a transonic centrifugal compressor: GT2007-272009[R]. New York: ASME, 2007.
[26] SEⅡCHI L. Investigation of unsteady flow in vaned diffuser of a transonic centrifugal compressor: GT2006-902689[R]. New York: ASME, 2006.
[27] BENNETT I, TOURLIDAKIS A, ELDER R L. The design and analysis of pipe diffusers for centrifugal compressor[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2000, 214(1): 87-96.
[28] 王毅, 赵胜丰. 高负荷离心压气机管式扩压器特点及机理分析[J]. 航空动力学报, 2011, 26(3): 649-655. WANG Y, ZHAO S F. Analysis of characteristic and mechanism of pipe diffuser for a highly loaded centrifugal compressor[J]. Journal of Aerospace Power, 2011, 26(3): 649-655 (in Chinese).
[29] KUNTE R, SCHWARZ P, WILKOSZ B, et al. Experimental and numerical investigation of tip clearance and bleed effects in a centrifugal compressor stage with pipe diffuser[C]//ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. New York: ASME, 2011.
[30] 谢芳, 楚武利. 跨声轴流压气机激波/泄漏涡/边界层分离相互作用的影响[J]. 航空动力学报, 2012, 27(2): 425-430. XIE F, CHU W L. Influence of blade tip clearance at near-stall condition on transonic axial-flow compressor[J]. Journal of Aerospace Power, 2012, 27(2): 425-430 (in Chinese).
[31] 张晨凯, 胡骏. 轴流压气机转子叶尖间隙流动结构的数值研究[J]. 航空学报, 2014, 35(5): 1236-1245. ZHANG C K, HU J. Numerical study of tip clearance flow structure of an axial flow compressor rotor[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1236-1245 (in Chinese).
[32] 赵伟光, 朱玲. 处理机匣对某跨声压气机气动性能影响的数值研究[J]. 南华动力学报, 2014(5): 9-13. ZHAO W G, ZHU L. Numerical smulation of casing treatment effect at tronsonic compressor[J]. Journal of Nanhua Power, 2014(5): 9-13 (in Chinese).
[33] HIDEAKI T. Effect of recirculation device on performance of high pressure ratio centrifugal compressor: GT2010-22570[R]. New York: ASME, 2010.
[34] 卜远远, 楚武利, 张皓光, 等. 高压比离心叶轮自循环机匣处理扩稳研究[J]. 推进技术, 2013, 34(2): 194-201. BU Y Y, CHU W L, ZHANG H G, et al. Stability improvement in high pressure-ratio centrifugal impeller with self recirculation casing treatment[J]. Journal of Propulsion Technology, 2013, 34(2): 194-201 (in Chinese).
[35] 康剑雄, 黄国平, 温殿忠. 离心压气机自循环机匣处理扩稳机理分析[J]. 航空学报, 2014, 35(12): 3264-3272. KANG J X, HUANG G P, WEN D Z. Mechanism analysis of stability enhancement by self-recirculating casing treatment for centrifugal compressor[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12): 3264-3272 (in Chinese).
[36] 曹四. 机匣处理对跨声速离心压气机性能影响[J]. 南华动力学报, 2016(2): 56-61. CAO S. Influence of casing treatment at tronsonic centrifugal compressor[J]. Journal of Nanhua Power, 2016(2): 56-61 (in Chinese).

文章导航

/