高超声速可变形双翼气动特性
收稿日期: 2017-04-25
修回日期: 2017-05-31
网络出版日期: 2017-06-02
Aerodynamic characteristics of hypersonic morphing biplane
Received date: 2017-04-25
Revised date: 2017-05-31
Online published: 2017-06-02
为研究高超声速可变形双翼在不同迎角和不同马赫数条件下的气动特性,并针对在给定的迎角和马赫数条件下可变形双翼的舵面偏转角选取困难的问题,通过结合二分法、遗传算法和高斯牛顿算法对处于不同迎角和不同马赫数条件下的可变形双翼的舵面偏转角进行了选取确定,分析了可变形双翼的气动特性和舵面偏转角对其气动特性产生影响的机理。研究表明:当来流马赫数为5,迎角从1°~8°变化时,可变形双翼的升阻比明显大于Busemann双翼的升阻比,最大可达4.2倍;当迎角为3°,来流马赫数从0.5~5变化时,可变形双翼的升阻比最大可达Busemann双翼升阻比的3.4倍。结果表明可变形双翼在大迎角和大速度范围内均能保持高升阻比,在高超声速飞行中将具有更好的应用价值和前景。
刘姝含 , 朱战霞 . 高超声速可变形双翼气动特性[J]. 航空学报, 2017 , 38(9) : 121352 -121352 . DOI: 10.7527/S1000-6893.2017.121352
To study the aerodynamic performance of the morphing biplane under different angles of attack and different Mach numbers, as well as the difficulty in selecting the deflection angle of rudder with given angle of attack and Mach number, this paper combines dichotomy, genetic algorithm and Gauss-Newton algorithm to determine the deflection angle of rudder of the morphing biplane under different angles of attack and different Mach numbers. The aerodynamic characteristics of the morphing biplane and the influence of the deflection angle of rudder on the aerodynamic characteristics are analyzed. It is shown that as the Mach number is 5, and the angle of attack ranges from 1°to 8°, the lift-drag ratio of the morphing biplane is obviously greater (up to 4.2 times) than that of Busemann biplane. When the angle of attack is 3°, and the Mach number ranges from 0.5 to 5, the lift-drag ratio of the morphing biplane can be up to 3.4 times than that of Busemann biplane. These results indicate that the morphing biplane can maintain a high lift-drag ratio at large angle of attack and high speed range, and has better applicability and prospects in hypersonic flight.
[1] SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84(7): 1-28.
[2] BUSEMANN A. Aerodynamic lift at supersonic speeds[C]//The 5th Volta Aerodynamic Conference, 1935.
[3] BUSEMANN A. The relation between minimized drag and noise at supersonic speed[C]//The High-Speed Aeronautics Conference, 1955.
[4] LICHER R M. Optimum two-dimensional multiplanes in supersonic flow[C]//Douglass Aircraft Conference, 1955.
[5] 华如豪, 叶正寅. 基于Busemann双翼构型的超音速导弹减阻技术研究[J]. 应用力学学报, 2012, 29(5): 536-540. HUA R H, YE Z Y. Drag reduction method for supersonic missile based on Busemann biplane concept[J]. Chinese Journal of Applied Mechanics, 2012, 29(5): 536-540 (in Chinese).
[6] PATIDAR V K, YADAV R, JOSHI S. Numerical investigation of the effect of stagger on the aerodynamic characteristics of a Busemann biplane[J]. Aerospace Science & Technology, 2016, 55(8): 252-263.
[7] YAMASHITA H, KURATANI N, YONEZAWA M, et al. Wind tunnel testing on start/unstart characteristics of finite supersonic biplane wing[J]. International Journal of Aerospace Engineering, 2013(6): 1-10.
[8] MARUYAMA D, MATSUSHIMA K, KUSUNOSE K, et al. Three-dimensional aerodynamic design of low-wave-drag supersonic biplane using inverse problem method[J]. Journal of Aircraft, 2015, 46(6): 1906-1918.
[9] YONEZAWA M, OBAYASHI S. Aerodynamic performance of the three-dimensional lifting supersonic biplane[J]. Journal of Aircraft, 2015, 47(3): 983-991.
[10] DAN I, ARAD E. A parametric study of an axisymetric Busemann biplane configuration[J]. Journal of Aircraft, 2013, 46(6): 1930-1937.
[11] MARUYAMA D, KUSUNOSE K, MATSUSHIMA K, et al. Aerodynamic analysis and design of Busemann biplane: Towards efficient supersonic flight[J]. Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering, 2012, 226(2): 217-238.
[12] 李占科, 张翔宇, 冯晓强, 等. 超声速双层翼翼型的阻力特性研究[J]. 应用力学学报, 2014(4): 483-488. LI Z K, ZHANG X Y, FENG X Q, et al. The study on the drag characteristic of supersonic biplane[J]. Chinese Journal of Applied Mechanics, 2014(4): 483-488 (in Chinese).
[13] XU Y Z, XU Z Q, LI S G, et al. A hypersonic lift mechanism with decoupled lift and drag surfaces[J]. Science China: Physics, Mechanics & Astronomy, 2013, 56(5): 981-988.
[14] HU R, JAMESON A, WANG Q Q. Adjoint-based aerodynamic optimization of supersonic biplane airfoils[J]. Journal of Aircraft, 2012, 49(3): 802-814.
[15] HU R. Supersonic biplane design via adjoint method[D]. Stanford, CA: Stanford University, 2009.
[16] KUSUNOSE K. A fundamental study for the development of boomless supersonic transport aircraft[C]//The 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA: AIAA, 2006.
[17] MATSUSHIMA K, TAKANASHI S. An inverse design method for wings using integral equations and its recent progress[C]//Proceedings of Lectures and Workshop International Recent Advances in Multidisciplinary Technology and Modeling, 2008.
[18] KUSUNOSE K, MATSUSHIMA K, MARUYAMA D. Supersonic biplane-A review[J]. Progress in Aerospace Sciences, 2011, 47(1): 53-87.
[19] YAMASHITA H, YONEZAWA M, OBAYASHI S, et al. A study of Busemann-type biplane for avoiding choked flow[C]//The 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA: AIAA, 2007.
[20] 赵承熙, 叶正寅, 华如豪. 新型目标压力分布下的Licher双翼反设计方法研究[J]. 空气动力学学报, 2015, 33(5): 610-616. ZHAO C X, YE Z Y, HUA R H. Inverse design method for the Licher biplane with a new target pressure distributio[J]. Acta Aerodynamica Sinica, 2015, 33(5): 610-616 (in Chinese).
[21] TIAN Y, AGARWAL R K. Shape optimization of Busemann-type biplane airfoil for drag reduction under non-lifting and lifting conditions using genetic algorithms[C]//Optimization Algorithms-Methods and Applications, 2015.
[22] HUANG L, HUANG G, LEBEAU R P, et al. Optimization of aifoil flow control using a genetic algorithm with diversity control[J]. Journal of Aircraft, 2015, 44(4): 1337-1349.
[23] GURUSWAMY G. Dynamic stability analysis of hypersonic transport during reentry[J]. AIAA Journal, 2016, 54(11): 3374-3381.
[24] CROSSLEY W A, LAANANEN D H. Conceptual design of helicopters via genetic algorithm[J]. Journal of Aircraft, 2015, 33(6): 1062-1070.
[25] MINOT A, LU Y M, LI N. A distributed Gauss-Newton method for power system state estimation[J]. IEEE Transactions on Power Systems, 2015, 31(5): 3804-3815.
[26] BAO J F, LI C, SHEN W P, et al. Approximate Gauss-Newton methods for solving underdetermined nonlinear least squares problems[J]. Applied Numerical Mathematics, 2017, 111(1): 92-110.
/
〈 | 〉 |