收稿日期: 2016-11-24
修回日期: 2017-05-31
网络出版日期: 2017-05-31
基金资助
国家自然科学基金(11402208)
Preliminary design method for miniature electric-powered vertical take-off and landing unmanned airial vehicle and effects of special parameters
Received date: 2016-11-24
Revised date: 2017-05-31
Online published: 2017-05-31
Supported by
National Natural Science Foundation of China (11402208)
针对微小型电动垂直起降无人机(VTOL mEUAV),分析其设计难点,通过理论分析提出了一种基于特殊参数的总体设计方法,并基于算例进行了特殊参数的计算和影响分析。从翼载荷的选择、起飞总重迭代估计、无人机的平衡与操纵分析和飞翼布局设计方面详细阐述总体设计方法的过程,并针对特殊设计的一套动力系统X型飞翼尾坐式垂直起降无人机,进行功重比、动力系统工作点特性匹配及动力系统安装角等特殊参数的选择和影响分析,最终基于设计结果进行原理样机制作与飞行试验,证明了设计方法的有效性。研究结果表明,不同设计目标会引起翼载荷的选择和功重比的变化,螺旋桨与电机的匹配特性极大地影响动力系统效率与能源选择,合理选择动力系统的安装角与偏转方向可在基本不影响整体性能的情况下有效地改善操纵特性。
唐伟 , 宋笔锋 , 曹煜 , 杨文青 . 微小型电动垂直起降无人机总体设计方法及特殊参数影响[J]. 航空学报, 2017 , 38(10) : 220972 -220972 . DOI: 10.7527/S1000-6893.2017.220972
The difficulties of the design of the miniature Electric-powered Vertical Take-Off and Landing Unmanned Aerial Vehicle (VTOL mEUAV) are analyzed,and a preliminary design method based on special parameters is proposed according to theoretical analysis.The choice of wing-load,estimation of total weight,the analysis of balance and control,and the design of tailless wing are described.The special parameters concerning power-to-weight ratio,propulsion matching and mounted incidence of a X-type tailless tail-sitter VTOL UAV equipped with one set of propulsion are then selected and analyzed.Based on the design results,the manufactory and flight tests are used to verify the design method.The results show that different design objective leads to different wing-load and power-to-weight ratio;propulsion efficiency and energy is greatly affected by motor and propeller matching;the suitable incidence of proplusion and deflected direction can improve the yaw control in hover without decreasing the whole property.
[1] 王冠林, 武哲. 垂直起降无人机总体方案分析及控制策略综合研究[J]. 飞机设计, 2006(3):25-30. WANG G L, WU Z. Configurations and control strategy for VTOL UAVs[J]. Aircraft Design, 2006(3):25-30(in Chinese).
[2] HOGEE J V. Development of a miniature VTOL tail-sitter unmanned aerial vehicle[D]. Provo:Brigham Young University, 2008:2-6.
[3] RAYMER D P. Aircraft design:A conceptual approach[M]. Reston, VA:AIAA Education, 1992:457-540.
[4] OOSEDO A, ABIKO S, KONNO A, et al. Development of a quad rotor tail-sitter VTOL UAV without control surfaces and experimental verification[C]//IEEE International Conference on Robotics and Automation ICRA. Piscataway, NJ:IEEE Press, 2013:317-322.
[5] OOSEDO A, KONNO A, MATSUMOTO T, et al. Design and attitude control of a quad-rotor tail-sitter vertical takeoff and landing unmanned aerial vehicle[J]. Advanced Robotics, 2012, 26(3-4):307-326.
[6] 张啸迟, 万志强, 章异赢, 等. 旋翼固定翼复合式垂直起降飞行器概念设计研究[J]. 航空学报, 2016, 37(1):179-192. ZHANG X C, WAN Z Q, ZHANG Y Y, et al. Conceptual design of rotary wing and fixed wing compound VTOL aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):179-192(in Chinese).
[7] 唐伟, 王进, 王利光, 等. 一种可变体X型机翼垂直起降微型飞行器:ZL201410233178.0[P]. 2014-08-13. TANG W, WANG J, WANG L G, et al. A VTOL MAV with morphing X-type wing:ZL201410233178.0[P]. 2014-08-13(in Chinese).
[8] KARAKAS H, KOYUNCU E, INALHAN G. ITU tailless UAV design[J]. Journal of Intelligent & Robotic Systems, 2013, 69(1-4):131-146.
[9] WAGNER N, BOLAND S, TAYLOR B, et al. Powertrain design for hand-launchable long endurance unmanned aerial vehicles[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, VA:AIAA, 2011:5-6.
[10] HAROLD Y, MING C. Test, analysis and design of propeller propulsion systems for MAVs[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2011:2-18.
[11] 陈军, 杨树兴, 莫雳. 电动无人机动力系统建模与实验[J]. 航空动力学报, 2009, 24(6):1339-1344. CHEN J, YANG S X, MO L. Modeling and experimental analysis of UAV electric propulsion system[J]. Journal of Aerospace Power, 2009, 24(6):1339-1344(in Chinese).
[12] LANDOLFO G. Aerodynamic and structural design of a small nonplanar wing UAV[D]. Orlando, FL:University of Dayton, 2009:35-38.
[13] 王波, 侯中喜, 汪文凯. 小型电动垂直起降飞行器推进系统性能分析[J]. 国防科技大学学报, 2015(3):84-90. WANG B, HOU Z X, WANG W K. Performance analysis of propulsion system of miniature electric-powered vertical takeoff and landing air vehicles[J]. Journal of National University of Defense Technology, 2015(3):84-90(in Chinese).
[14] GUR O, ROSEN A. Optimizing electric propulsion systems for unmanned aerial vehicles[J]. Journal of Aircraft, 2009, 46(4):1340-1353.
[15] THOMAS J M, IFJU P G, KELLOGG J C, et al. Introduction to the design of fixed-wing micro air vehicles[M]. Reston, VA:AIAA, 2007:83-95.
[16] NICKEL K, WOHLFAHRT M. Tailless aircraft in theory and practice[M]. Reston, VA:AIAA, 1994:74.
[17] 段文博. 可悬停双旋翼微型飞行器设计与制造[D]. 南京:南京航空航天大学, 2008:10-16. DUAN W B. The design and manufactory of hovering dual rotor micro air vehicle[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008:10-16(in Chinese).
[18] RANDALL R, HOFFMANN C A, SHKARAYEV S. Longitudinal aerodynamics of a vertical takeoff and landing micro air vehicle[J]. Journal of Aircraft, 2015, 48(1):166-176.
[19] KHAN F A. Preliminary aerodynamic investigation of box-wing configurations using low fidelity codes[D]. Hamburg:Hamburg University, 2010:18-42.
[20] MELIN T. A vortex lattice MATLAB implementation for linear aerodynamic wing applications[D]. Stockholm:KTH Royal Institute of Technology, 2000:16-40.
[21] 刘斌, 马晓平, 王和平, 等. 小型电动无人机总体参数设计方法研究[J]. 西北工业大学学报, 2005, 23(3):396-400. LIU B, MA X P, WANG H P, et al. Design analysis methodology for electric powered mini UAV[J]. Journal of Northwestern Polytechnical University, 2005, 23(3):396-400(in Chinese).
/
〈 | 〉 |