收稿日期: 2017-03-13
修回日期: 2017-05-22
网络出版日期: 2017-05-21
基金资助
国家自然科学基金(11372129);江苏高校优势学科建设工程资助项目
Dynamics analysis of arresting hook bounce after touchdown and impacting with deck
Received date: 2017-03-13
Revised date: 2017-05-22
Online published: 2017-05-21
Supported by
National Natural Science Foundation of China (11372129); Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
为了解舰载飞机着舰时拦阻钩碰撞甲板后被反弹的动力学性能,以某舰载飞机为研究对象,建立了全机着舰动力学模型和拦阻钩碰撞甲板的碰撞模型,进行了全机着舰动力学仿真,通过拦阻钩碰撞反弹试验对碰撞模型进行修正,得到了更加准确的碰撞模型。将仿真结果与试验结果进行对比,验证了模型的准确性。研究了甲板涂层、俯仰角、航向速度、下沉速度和拦阻钩阻尼器参数对拦阻钩反弹动力学性能的影响。结果表明:航向速度对反弹高度和碰撞力几乎没有影响;随着下沉速度和俯仰角的增加,反弹高度和碰撞力也增加;拦阻钩阻尼器参数的变化不会影响碰撞力,但是对反弹动力学性能会产生明显的影响。
彭一明 , 聂宏 . 舰载飞机着舰时拦阻钩碰撞反弹动力学分析[J]. 航空学报, 2017 , 38(11) : 221233 -221233 . DOI: 10.7527/S1000-6893.2017.221233
In order to research the dynamic performance of the arresting hook after touchdown and impacting with the deck when the aircraft is arrested, a full-aircraft assembly model of a certain type of aircraft is developed to conduct dynamics simulation of the landing of the aircraft carrier. The model is updated with the data of arresting hook bounce test, and a more accurate model is obtained. The simulation results are compared with the test results, and the accuracy of the dynamics model is verified. The impact of the deck coating, pitch angle, engaging velocity, sinking velocity and parameters of the arresting hook damper on the dynamics performance of arresting hook bounce is studied. The results show that the engaging velocity has little effect on bounce height and impact force. The bounce height and impact force get larger with the increase of the sinking velocity and pitch angle. The parameters of hook damper almost have no effect on the impact force, but obvious effect on the bounce height.
Key words: carrier aircraft; arresting hook; impact; dynamics; damper
[1] 柳刚. 舰载飞机着舰拦阻钩碰撞及拦阻动力学研究[D]. 南京:南京航空航天大学, 2009:50-51. LIU G. Investigation on arresting dynamics for carrier-based aircraft with consideration of arresting hook bounce[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009:50-51(in Chinese).
[2] 聂宏, 彭一明, 魏小辉, 等. 舰载飞机着舰拦阻动力学研究综述[J]. 航空学报, 2014, 35(1):1-12. NIE H, PENG Y M, WEI X H, et al. Overview of carrier-based aircraft arrested deck-landing dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):1-12(in Chinese).
[3] THOMLINSON J. A study of the aircraft arresting-hook bounce problem:R. & M. No. 2980[R]. London:Her Majesty's Stationery Office, 1957.
[4] Engineered Arresting Systems Corporation. Safety bulletin[R]. Plaisir Cedex:Engineering Arresting System Corporation, 2004.
[5] 柳刚, 聂宏. 拦阻钩初次碰撞道面反弹动力学[J]. 航空学报, 2009, 30(9):1672-1677. LIU G, NIE H. Dynamics of arresting hook bounce after initial touchdown and impacting with deck[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9):1672-1677(in Chinese).
[6] 柳刚, 聂宏. 飞机拦阻钩碰撞动力学和拦阻钩纵向阻尼器性能[J]. 航空学报, 2009, 30(11):2093-2099. LIU G, NIE H. Dynamics of bounce of aircraft arresting hook impacting with deck and performance of arresting hook longitudinal damper[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11):2093-2099(in Chinese).
[7] ZHU Q D, MENG X, ZHANG Z. Simulation research on motion law of arresting hook during landing[J]. Applied Mechanics and Materials, 2013, 300-301:997-1002.
[8] 范学伟, 吴永康, 吴少波, 等.拦阻钩触舰反弹动态分析及缓冲性能研究[J]. 飞机设计, 2015, 35(1):6-12. FAN X W, WU Y K, WU S B, et al. A research on collision process of arresting hook and cushioning properties of the buffer[J]. Aircraft Design, 2015, 35(1):6-12(in Chinese).
[9] 杨全伟. 舰载飞机拦阻钩载荷实测方法研究[J]. 航空学报, 2015, 36(4):1162-1168. YANG Q W. Research on flight measurement method of a carrier-based aircraft hook loads[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1162-1168(in Chinese).
[10] 洪嘉振. 计算多体系统动力学[M]. 北京:高等教育出版社, 1999:44-49. HONG J Z. Computational dynamics of multibody system[M]. Beijing:Higher Education Press, 1999:44-49(in Chinese).
[11] 冯飞, 常正, 聂宏, 等. 飞机柔性对前起落架摆振的影响分析[J]. 航空学报, 2011, 32(12):2227-2235. FENG F, CHANG Z, NIE H, et al. Analysis of influence of aircraft flexibility on nose landing gear shimmy[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(12):2227-2235(in Chinese).
[12] 飞机设计手册总编委会. 飞机设计手册:起飞着陆系统设计[M]. 北京:航空工业出版社, 2002:95-170. The Chief Committee of Aircraft Design Manual. Aircraft design manual:Takeoff and landing system design[M]. Beijing:Aviation Industry Press, 2002:95-170(in Chinese).
[13] 诸德培. 摆振理论及防摆措施[M]. 北京:国防工业出版社, 1984:2-4, 20-24. ZHU D P. Shimmy theory and anti-shimmy measure[M]. Beijing:National Defense Industry Press, 1984:2-4, 20-24(in Chinese).
[14] 冯飞. 起落架非线性摆振分岔分析[D]. 南京:南京航空航天大学, 2014:106-108. FENG F. Bifurcation analysis of nonlinear shimmy of landing gear[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:106-108(in Chinese).
[15] JOHNSON K L. Contact mechanics[M]. Cambridge:Cambridge University, 1985:90-104.
[16] YOUNG W C, BUDYNAS R G. Roark's formula for stress and strain[M]. New York:The McGraw Hill Companies, 2002:702-705.
[17] 范钦珊. 理论力学[M]. 北京:高等教育出版社, 2000:406-413. FAN Q S. Theoretical mechanics[M]. Beijing:Higher Education Press, 2000:406-413(in Chinese).
[18] 孙安媛, 黄沛天. 也谈完全非弹性碰撞和恢复系数[J]. 大学物理, 2001, 20(3):9-14. SUN A Y, HUANG P T. On the completely inelastic collision and the coefficient of restitution[J]. College Physics, 2001, 20(3):9-14(in Chinese).
[19] 罗明聪. 柔性梁与刚性地面碰撞动力学研究及仿真[D]. 南京:南京理工大学, 2006:36-37. LUO M C. Dynamic simulation and research of impact between the flexible and rigid surface[D]. Nanjing:Nanjing University of Science and Technology, 2006:36-37(in Chinese).
[20] 中国人民解放军总装备部. 军用飞机结构强度规范第4部分:地面载荷:GJB 67.4A-2008[S]. 北京:中国人民解放军总装备部, 2008:4-5. The PLA General Armament Department. Military airplane structural strength specification Part 4:Ground loads:GJB 67.4A-2008[S]. Beijing:The PLA General Armament Department, 2008:4-5(in Chinese).
/
〈 | 〉 |