材料工程与机械制造

基于力约束的空心涡轮叶片陶芯定位方法

  • 崔康 ,
  • 汪文虎 ,
  • 蒋睿嵩 ,
  • 赵德中 ,
  • 靳淇超
展开
  • 西北工业大学 现代设计与集成制造技术教育部重点实验室, 西安 710072

收稿日期: 2017-03-01

  修回日期: 2017-04-21

  网络出版日期: 2017-05-18

基金资助

国家自然科学基金(51475374,51505387);中央高校基本科研业务费专项资金(3102015ZY087)

Force-constraint method for localization of ceramic core of hollow turbine blade

  • CUI Kang ,
  • WANG Wenhu ,
  • JIANG Ruisong ,
  • ZHAO Dezhong ,
  • JIN Qichao
Expand
  • Key Laboratory of Contemporary Design and Integrated Manufacturing Technology of Ministry of Education, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2017-03-01

  Revised date: 2017-04-21

  Online published: 2017-05-18

Supported by

National Natural Science Foundation of China (51475374,51505387);the Fundamental Research Funds for the Central Universities (3102015ZY087)

摘要

精铸蜡型作为空心涡轮叶片精铸过程重要的前期工艺转接件,其壁厚精度主要由蜡型模具型腔与内部陶芯的位置匹配关系决定。由于陶芯在模具内完全依靠定位元件实现空间定位,为减小由定位误差引起的陶芯位姿漂移,提出了一种基于力平衡约束的空心涡轮叶片精铸模具陶芯定位布局优化方法。首先,通过建立陶芯定位误差传递模型,揭示了定位误差与陶芯空间位姿扰动量之间的映射关系;其次,根据力平衡原理构建了基于力约束的陶芯定位布局优化模型;之后,针对陶芯表面定位候选点的离散分布特性,结合遗传算法给出了陶芯定位布局点的详细求解策略。最后,仿真对比证明了利用本文所提方法获得的陶芯定位方案可以在保证陶芯定位稳定性的同时提高陶芯定位精度,此外,按照优化后的定位方案压制实际蜡型,壁厚检测结果也进一步表明所提方法的有效性。

本文引用格式

崔康 , 汪文虎 , 蒋睿嵩 , 赵德中 , 靳淇超 . 基于力约束的空心涡轮叶片陶芯定位方法[J]. 航空学报, 2017 , 38(9) : 421209 -421209 . DOI: 10.7527/S1000-6893.2017.421209

Abstract

The wax pattern is always used as a dimension transfer component in near-net-shape casting process for a hollow turbine blade, and its wall-thickness accuracy entirely depends on the positional relationship between the die cavity of the wax pattern and the internal ceramic core. Generally, the ceramic core is located in the wax pattern die through a series of locating rods. In order to reduce the positional shift of the ceramic core caused by locating errors, a locating layout optimization method based on the force-balance constraint is proposed in this paper. An error transfer model, which formulates the mapping relationship between localization errors and perpetuation of the ceramic core, is established. According to the static equilibrium theory, an optimization model for locating the layout of the ceramic core is then proposed based on gravity constraint. Considering the discrete feature of locating the candidate point on the surface of the ceramic core, a solving strategy for the optimization model is given by utilizing the genetic algorithm. Comparisons of simulation results prove that the locating layout optimized with the method in this paper can improve the localization accuracy of the ceramic core, while guaranteeing the localization stability. Based on a wax injection experiment, the feasibility of the optimization result is also demonstrated.

参考文献

[1] PETES F, VOIGT R, BLAIR M. Dimensional repeatability of investment castings[C]//9th World Conference on Investment Casting. Montvale, NJ: Investment Casting Institute, 1996: 22.
[2] BEMBLAGE O, KARUNAKAR D B. A Study on the blended wax patterns in investment casting process[C]//Proceedings of the World Congress on engineering. The International Association of Engineers, 2011, 1: 6-8.
[3] SINGH B, KUMAR P, MISHRA B K. Simulation of wax pattern dimensions for accuracy improvement in ceramic shell investment casting[J]. International Journal of Surface Engineering & Materials Technology, 2013, 3(1): 45-50.
[4] SABAU A S, VISWANATHAN S. Prediction of wax pattern dimensions in investment casting[J]. Transactions-American Foundrymens Society, 2002, 1: 733-746.
[5] SABAU A S, VISWANATHAN S. Material properties for predicting wax pattern dimensions in investment casting[J]. Materials Science and Engineering: A, 2003, 362(1): 125-134.
[6] LIU C, JIN S, LAI X, et al. Influence of complex structure on the shrinkage of part in investment casting process[J]. The International Journal of Advanced Manufacturing Technology, 2015, 77(5-8): 1191-1203.
[7] SINGH B, KUMAR P, MISHRA B K. Simulation of wax pattern dimensions for accuracy improvement in ceramic shell investment casting[J]. International Journal of Surface Engineering and Materials Technology, 2013, 3(1): 45-50.
[8] PATTNAIK S, KARUNAKAR D B, JHA P K. Multi-characteristic optimization of wax patterns in the investment casting process using grey-fuzzy logic[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(5-8): 1577-1587.
[9] JIANG R S, WANG W H, ZHANG D H, et al. Wall thickness monitoring method for wax pattern of hollow turbine blade[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(5): 949-960.
[10] 崔康, 汪文虎, 蒋睿嵩, 等. 涡轮叶片精铸模具陶芯定位元件逆向调整算法[J]. 航空学报, 2011, 32(10): 1924-1929. CUI K, WANG W H, JIANG R S, et al. Reverse adjustment algorithm of ceramic core locators in hollow turbine blade investment casting die[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1924-1929 (in Chinese).
[11] 冯炜, 汪文虎, 王孝忠, 等. 空心涡轮叶片精铸蜡型陶芯定位元件尺寸计算方法[J]. 航空学报, 2013, 34(1): 181-186. FENG W, WANG W H, WANG X Z, et al. Size calculation method of ceramic core locators for hollow turbine blade investment casting wax pattern[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 181-186 (in Chinese).
[12] ASNTE J N. A combined contact elasticity and finite element-based model for contact load and pressure distribution calculation in a frictional workpiece-fixture system[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(5-6): 578-588.
[13] WU N H, CHAN K C. A genetic algorithm based approach to optimal fixture configuration[J]. Computers & Industrial Engineering, 1996, 31(3): 919-924.
[14] CHOU Y C, CHANDRU V, BARASH M M. A mathematical approach to automatic configuration of machining fixtures: analysis and synthesis[J]. Journal of Engineering for Industry, 1989, 111(4): 299-306.
[15] LIAO Y G. A genetic algorithm-based fixture locating positions and clamping schemes optimization[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2003, 217(8): 1075-1083.
[16] LI B, MELKOTE S N. Improved workpiece location accuracy through fixture layout optimization[J]. International Journal of Machine Tools and Manufacture, 1999, 39(6): 871-883.
[17] KAYA N. Machining fixture locating and clamping position optimization using genetic algorithms[J]. Computers in Industry, 2006, 57(2): 112-120.
[18] PRABHAHARAN G, PADMANABAN K P, KRISHNAKUMAR R. Machining fixture layout optimization using FEM and evolutionary techniques[J]. The International Journal of Advanced Manufacturing Technology, 2007, 32(11-12): 1090-1103.
[19] PADMANABAN K P, PRABHAHARAN G. Dynamic analysis on optimal placement of fixturing elements using evolutionary techniques[J]. International Journal of Production Research, 2008, 46(15): 4177-4214.
[20] PADMANABAN K P, ARULSHRI K P, PRABHAHARAN G. Machining fixture layout design using ant colony algorithm based continuous optimization method[J]. The International Journal of Advanced Manufacturing Technology, 2009, 45(9-10): 922-934.
[21] REX F M T, RAVINDRAN D. An integrated approach for optimal fixture layout design[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2017, 231(7): 1217-1228.
[22] WANG M Y, PELINESCU D M. Optimizing fixture layout in a point-set domain[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 312-323.
[23] WANG M Y. An optimum design for 3-D fixture synthesis in a point set domain[J]. IEEE Transactions on Robotics and Automation, 2000, 16(6): 839-846.
[24] XIONG Z, WANG M Y, LI Z. A near-optimal probing strategy for workpiece localization[J]. IEEE Transactions on Robotics, 2004, 20(4): 668-676.
[25] ATKINSON A C, DONEV A N, TOBIAS R D. Optimum experimental designs, with SAS[M]. Oxford: Oxford University Press, 2007: 137-147.

文章导航

/