固体力学与飞行器总体设计

一种复杂可修系统的可用度计算方法

  • 李军亮 ,
  • 滕克难 ,
  • 夏菲
展开
  • 1. 海军航空工程学院 科研部, 烟台 264001;
    2. 中国人民解放军92635部队, 青岛 266041;
    3. 国网辽阳供电公司信息通信分公司, 辽阳 111000

收稿日期: 2017-02-07

  修回日期: 2017-05-03

  网络出版日期: 2017-05-03

基金资助

国防预研基金(9140A27020212JB14311)

An availability calculation method for complex repairable systems

  • LI Junliang ,
  • TENG Ke'nan ,
  • XIA Fei
Expand
  • 1. Naval Aeronautical and Astronautical University, Yantai 264001, China;
    2. 92635 PLA Force, Qingdao 266041, China;
    3. State Grid Liaoyang Electric Power Supply Company, Liaoyang 111000, China

Received date: 2017-02-07

  Revised date: 2017-05-03

  Online published: 2017-05-03

Supported by

National Defence Pre-research Foundation(9140A27020212JB14311)

摘要

论文采用分-立的思想构建了一种复杂可修系统的可用度计算方法,即采用先分解后综合的方法来构建系统的可用度模型。分解主要是指分析系统包含的子系统和部件之间的故障行为特性,包括部件故障时间分布函数、故障传播路径、系统结构等内容,采用通用发生函数(UGF)建立了多部件系统的0-1状态可靠性评估模型,并对系统的可靠度进行分析,在此基础上将系统看作一个整体,通过更新过程理论建立故障时间和维修时间服从一般分布的系统可用度方程,给出并证明了系统可用度求解的一般方法。通过算例分析表明,论文设计方法严谨、科学,具有较强的可用性和通用性,在可靠性工程领域有很强的推广价值。

本文引用格式

李军亮 , 滕克难 , 夏菲 . 一种复杂可修系统的可用度计算方法[J]. 航空学报, 2017 , 38(12) : 221169 -221169 . DOI: 10.7527/S1000-6893.2017.221169

Abstract

In this paper, an availability calculation model is presented for the complex repairable system. The method of first decomposition before integration is adopted to build the model for the system availability. Decomposition mainly refers to analysis of the failure behaviors between subsystems and components of the system, including distribution function for parts fault time, fault propagation path, system structure. The Universal Generating Function (UGF) method is used to develop a reliability assessment model for the 0-1 binary state multi-components system, and the reliability of the system is analyzed. The general system is then viewed as a whole, and the system availability model is built based on the renewal process theory when the system fault and repair time obeys general distribution, and a general method is presented to solve system availability model. A case study is presented to illustrate that the design method is rigorous and scientific, and has strong usability and versatility and thus very strong applicability in the field of reliability engineering.

参考文献

[1] KANG R, ZHANG Q Y, ZENG Z G. Measuring reliability under epistemic uncertainty:Review on non-probabilistic reliability metrics[J].Chinese Journal of Aeronautics, 2016, 29(3):571-579.[2] 徐宗昌. 保障性工程[M]. 北京:兵器工业出版社, 2002:50-65. XU Z C. Supportablity engineering[M]. Beijing:Weapon Industry Press, 2002:50-65(in Chinese).[3] 孔德良, 王少萍. 可修系统的可用度分析方法研究[J]. 北京航空航天大学学报, 2002, 28(2):129-132. KONG D L, WANG S P. Study on availability analysis for repairable system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(2):129-132(in Chinese).[4] 王蕴, 王乃超, 马麟. 考虑备件约束的多部件串联系统使用可用度计算方法[J]. 航空学报, 2015, 36(4):1195-1201. WANG Y, WANG N C, MA L. Operational availability calculation methods of various series systems under the constraint of spare part[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1195-1201(in Chinese).[5] 杨懿, 任思超, 于永利. 均匀分布下系统瞬时可用度理论分析[J]. 北京航空航天大学学报, 2016, 42(1):28-34. YANG Y, REN S C, YU Y L. Theory analysis of system instantaneous availability under uniform distribution[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1):28-34(in Chinese).[6] 肖刚. 评估复杂可维修系统可靠度与瞬态可用度的蒙特卡洛方法[J]. 兵工学报, 2002, 23(2):46-50. XIAO G. A Monte Carlo method for obtaining reliability and availability confidence limits of complex maintenance system[J]. Acta Armamentarii, 2002, 23(2):46-50(in Chinese).[7] 阮渊鹏, 何桢. 基于MCS的多状态复杂系统可靠性评估[J]. 系统工程与电子技术, 2013, 35(4):900-904. RUAN Y P, HE Z. Reliability evaluation of complex system with common cause failures based on MCS-CA system with common cause[J]. System Engineering and Electionics, 2013, 35(4):900-904(in Chinese).[8] JAVIER F, ANGEL A J. Predicting availability functions in time-dependent complex systems with SAEDES simulation algorithms[J]. Reliability Engineering and System Safety, 2008, 93:1761-1771.[9] HINDOLO G, EDOARDO P. A hybrid load flow and event driven simulation approach to multi-state system reliability evaluation[J]. Reliability Engineering and System Safety, 2016,152:351-367.[10] 阮渊鹏, 何祯. 基于MCS的多状态复杂系统可靠性评估[J]. 系统工程学报, 2013, 28(3):410-418 RUAN Y P, HE Z. Reliability evaluation of multi-state complex systems based on MCS[J]. Journal of Systems Engineering, 2013, 28(3):410-418(in Chinese).[11] GREGORY L, LISNIANSKI A. Importance and sensitivity analysis of multi-state systems using the universal generating function method[J]. Reliability Engineering and System Safety, 1999, 65:271-282.[12] GREGORY L. A universal generating function approach for the analysis of multi-state systems with dependent elements[J]. Reliability Engineering and System Safety, 2004, 84:285-292.[13] GREGORY L, YI D. Using inverse Lz-transform for obtaining compact stochastic model of complex power station for short-term risk evaluation[J]. Reliability Engineering and System Safety, 2016, 145:19-27.[14] GREGORY L, LIU D X, SUPRASAD V, et al. Reliability of non-repairable phased-mission systems with propagated failures[J]. Reliability Engineering and System Safety, 2013, 119:218-228.[15] ANATOLY L, DAVID E, DAVID L. A multi-state Markov model for a short-term reliability analysis of a power generating unit[J]. Reliability Engineering and System Safety, 2012, 98:1-6.[16] HUAN Y, JUN Y, HUADONG M. Reliability analysis of repairable multi-state system with common bus performance sharing[J]. Reliability Engineering and System Safety, 2014, 132:90-96.[17] LI Y F, ZIO E. A multi-state model for the reliability assessment of a distributed generation system via universal generating function[J]. Reliability Engineering and System Safety, 2012,106:28-36.[18] 任博, 吕震宙, 李贵杰. 基于通用生成函数的系统寿命可靠性分析[J]. 航空学报, 2013, 34(11):2550-2556. REN B, LYV Z Z, LI G J. Reliability analysis for system life based on universal generating function[J]. Acta Aeronautica et Astronautica sinica, 2013, 34(11):2550-2556(in Chinese).[19] 高鹏, 谢里阳. 基于改进发生函数方法的多状态系统可靠性分析[J]. 航空学报, 2010, 31(5):934-939. GAO P, XIE L Y. Reliability analysis of multi-state systems based on improved universal generating function[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5):934-939(in Chinese).[20] PENG R, XIE M, NG S H, et al. Element maintenance and allocation for linear consecutively connected systems[J]. ⅡE Transactions, 2012, 44(11):964-973.[21] PENG R, ZHAI Q, XING L, et al. Reliability analysis and optimal structure of series-parallel phased-mission systems subject to fault level coverage[J]. ⅡE Transactions, 2016, 48(8):736-746.[22] 李军亮, 滕克难, 杨春周. 任务准备期内的军用飞机瞬时可用性研究[J]. 北京航空航天大学学报, 2017, 43(4):754-760. LI J L, TENG K N, YANG C Z. Research on instantaneous availability of the military aircraft during the mission preparation period[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4):754-760(in Chinese).[23] JYOTIRMOY S, SAHADEB S. Availability of a periodically inspected system under perfect repair[J]. Journal of Statistical Planning and Inference, 2000, 91:77-90.[24] 曹晋华, 程侃. 可靠性数学引论[M]. 北京:科学出版社, 1986:266-268. CAO J H, CHEN K. Introduction to reliability mathematics[M]. Beijing:Science Press, 1986:266-268(in Chinese).[25] 张元林. 积分变换[M]. 3版. 北京:高等教育出版社, 2003:67-106. ZHANG Y L. Integral transformation[M]. 3th ed. Beijing:Higher Education Press, 2003:67-106(in Chinese).[26] 徐文静. 不完全维修条件下的可用度与维修策略分析[D]. 长沙:国防科学技术大学, 2008. XU W J. Research on availability and maintenance policy under imperfect repair[D]. Changsha:National University of Defense Technology, 2008(in Chinese).[27] YANG S C, LIN T W. On the application of quasi-renewal theory in optimization of imperfect maintenance policies[C]//Reliability and Maintainability Symposium, Piscataway, NJ:IEEE Press, 2005:410-415.
文章导航

/