收稿日期: 2017-03-18
修回日期: 2017-04-25
网络出版日期: 2017-04-25
基金资助
国家"973"计划(2015CB755800);国家自然科学基金(11572338)
Numerical study of supercooling characteristics of droplet in icing wind tunnel
Received date: 2017-03-18
Revised date: 2017-04-25
Online published: 2017-04-25
Supported by
National Basic Research Program of China (2015CB755800);National Natural Science Foundation of China (11572338)
为明晰结冰风洞中液滴过冷特性,发展了基于欧拉法的气液两相耦合流动计算方法,模拟了结冰风洞中气液两相耦合流动过程。在此基础上,首先开展了参数影响研究,然后考察了典型结冰风洞构型中三维收缩效应对液滴过冷特性的影响,最后评估了该风洞试验段内液滴过冷状态。结果表明:结冰风洞中液滴过冷特性主要受液滴粒径和气流速度影响,增大液滴粒径和气流速度会显著增加两相温度平衡距离;结冰风洞中的液滴传热过程可以分为准一维传热和三维收缩传热两个阶段,三维收缩传热阶段对液滴过冷状态的影响显著强于准一维传热阶段,三维收缩效应对液滴过冷状态起决定性作用;在典型试验工况下,粒径小于40 μm的小粒径液滴在试验段内均达到过冷状态(液滴气流温度差小于2℃),但粒径大于100 μm的大粒径液滴在高风速条件下(试验段气流速度为157 m/s)未达到过冷状态(液滴气流温度差大于5℃)。
郭向东 , 王梓旭 , 李明 , 肖春华 . 结冰风洞中液滴过冷特性数值研究[J]. 航空学报, 2017 , 38(10) : 121254 -121254 . DOI: 10.7527/S1000-6893.2017.121254
In order to understand the supercooling of the droplet in the icing wing tunnel,a numerical method based on Eulerian theory is developed to simulate the gas-droplet flow in an icing wind tunnel.Using the numerical method,a parametric study is firstly conducted,then the influence of 3D contraction of a typical icing wind tunnel configuration is investigated,and finally the supercooling of the droplet in the test section of the wind tunnel is evaluated.The results show that the droplet diameter and gas velocity have a great effect on the supercooling of the droplet.The larger the droplet diameter or airspeed,the larger distance where the droplet temperature is close to the gas temperature.The process of droplet heat transfer in a typical icing wind tunnel configuration can be divided into two stages:the quasi-1D stage and the 3D contraction stage.The influence of the 3D contraction stage on the droplet supercooling is greater than that of the quasi-1D stage.Therefore,the 3D contraction of the typical icing wind tunnel configuration has a significant effect on the supercooling of the droplet.In typical test conditions,the small droplets with the diameter smaller than 40 μm are supercooling (the temperature difference between droplet and gas is lower than 2 ℃) in the test section,but big droplets with the diameter bigger than 100 μm cannot be supercooling (the temperature difference between the droplet and gas is higher than 5 ℃) at the high test section velocity (the airspeed is 157 m/s).
Key words: aircraft icing; icing wind tunnel; droplet; supercooling; numerical simulation
[1] 林贵平, 卜雪琴, 申晓斌, 等. 飞机结冰与防冰技术[M]. 北京:北京航空航天大学出版社, 2016:6-28. LIN G P, BU X Q, SHEN X B, et al. Aircraft icing and anti-icing technology[M]. Beijing:Beihang University Press, 2016:6-28(in Chinese).
[2] 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D]. 绵阳:中国空气动力研究与发展中心, 2007:6-17. YIN X. Numerical computation of aircraft icing and study on icing test scaling law[D]. Mianyang:China Aerodynamics Research and Development Center, 2007:6-17(in Chinese).
[3] 李伟斌, 易贤, 杜雁霞, 等. 基于变分分割模型的结冰冰型测量方法[J]. 航空学报, 2017, 38(1):120167. LI W B, YI X, DU Y X, et al. A measurement approach for ice shape based onvariational segmentation model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):120167(in Chinese).
[4] 易贤, 朱国林, 王开春, 等. 结冰风洞试验水滴直径选取方法[J]. 航空学报, 2010, 31(5):877-882. YI X, ZHU G L, WANG K C, et al. Selection of water droplet diameter in icing wind test[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5):877-882(in Chinese).
[5] 易贤, 桂业伟, 朱国林. 飞机三维结冰模型及其数值求解方法[J]. 航空学报, 2010, 31(11):2152-2158. YI X, GUI Y W, ZHU G L. Numerical method of a three-dimensional ice accretion model of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1):2152-2158(in Chinese).
[6] VAN ZANTE J F, IDE R F, STEEN L E. NASA Glenn icing research tunnel:2012 cloud calibration procedure and results[C]//4th AIAA Atmospheric and Space Environments Conference. Reston,VA:AIAA, 2012.
[7] STEEN L E, IDE R F, VAN ZANTE J F, et al. NASA Glenn icing research tunnel:2014 and 2015 cloud calibration procedures and results:NASA/TM-2015-218758[R]. Washington, D.C.:NASA, 2015.
[8] MILLER D R, ADDY H E, IDE R F. A study of large droplet ice accretions in the NASA Glenn IRT at near-freezing conditions:NASA TM-1996-107142-REV1[R]. Washington, D.C.:NASA, 1996.
[9] WILLBANKS C E, SCHULZT R J. Analytical study of icing simulation for turbine engines in altitude test cells[J]. Journal of Aircraft, 1975, 12(12):960-967.
[10] RAGNI A, ESPOSITO B, MARRAZZO M, et al. Calibration of the CIRA IWT in the high speed configuration[C]//43th AIAA Aerospace Science Meeting and Exhibit. Reston, VA:AIAA, 2005.
[11] BELLUCCI M, ESPOSITO B M, MARRAZZO M, et al. Calibration of the CIRA IWT in the low speed configuration[C]//45th AIAA Aerospace Science Meeting and Exhibit. Reston, VA:AIAA, 2007.
[12] TAN S C, PAPADAKIS M. General effects of large droplet dynamics on ice accretion modeling[C]//41th AIAA Aerospace Science Meeting and Exhibit. Reston, VA:AIAA, 2003.
[13] 易贤, 马洪林, 王开春, 等. 结冰风洞液滴运动及传质传热特性分析[J]. 四川大学学报, 2012, 44(2):132-135. YI X, MA H L, WANG K C, et al. Analysis of water droplet movement and heat/mass transfer in an icing wind tunnel[J]. Journal of Sichuan University, 2012, 44(2):132-135(in Chinese).
[14] DU Q, WANG Z Z, ZHU C L. Analysis and calculation of droplet-air mixed phase flow model in icing wind tunnel[C]//32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston, VA:AIAA, 2016.
[15] GARCIA-CASCALE J R, MULAS-PEREZ J, PAILLERE H. Extension of some numerical schemes to the analysis of gas and particle mixtures[J]. International Journal for Numerical Methods in Fluids, 2008, 56:845-875.
[16] SAITO T. Numerical analysis of dusty-gas flows[J]. Journal of Computational Physics, 2002, 176:129-144.
[17] LUO X S, WANG G, OLIVIER H. Parametric investigation of particle acceleration in high enthalpy conical nozzle flows for coating applications[J]. Shock Waves, 2008, 17:351-362.
[18] 吴孟龙, 常士楠, 冷梦尧, 等. 基于欧拉法模拟旋转帽罩水滴撞击特性[J]. 北京航空航天大学学报, 2014, 40(9):1263-1267. WU M L, CHANG S N, LENG M Y, et al. Simulation of droplet impingement characteristics of spinner based on Eulerian method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9):1263-1267(in Chinese).
[19] RANZ W E, MARSHALL W R. Evaporation from drops-Part Ⅱ[J]. Chemical Engineering Progress, 1952, 48(4):173-180.
[20] 郭向东, 黄生洪, 吴颖川, 等. 氢燃料燃烧加热风洞中水蒸气相变效应的数值研究[J]. 推进技术, 2017, 38(4):932-941. GUO X D, HUANG S H, WU Y C, et al. Numerical evaluation of water vapor phase transition effects in a hydrogen-fueled combustion-heated wind tunnel[J]. Journal of Propulsion Technology, 2017, 38(4):932-941(in Chinese).
[21] COBER S, BERNSTEIN B, JECK R, et al. Data and analysis for the development of an engineering standard for supercooled large drop conditions:DOT/FAA/AR-09/10[R]. Washington, D.C.:DOT/FAA/AR, 2009.
[22] WONG S C, TAN S C, PAPADAKIS M. Spray rig design for airborne icing tankers[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2007.
/
〈 | 〉 |