航空发动机内流与传热技术发展专栏

间隙位置和几何对端壁冷却性能的影响

  • 祝培源 ,
  • 宋立明 ,
  • 李军 ,
  • 丰镇平
展开
  • 西安交通大学 能源与动力工程学院, 西安 710049

收稿日期: 2016-11-17

  修回日期: 2017-03-01

  网络出版日期: 2017-04-05

基金资助

国家自然科学基金(51676149)

Effects of location and geometry of slot on film cooling performance of end-wall

  • ZHU Peiyuan ,
  • SONG Liming ,
  • LI Jun ,
  • FENG Zhenping
Expand
  • School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2016-11-17

  Revised date: 2017-03-01

  Online published: 2017-04-05

Supported by

National Natural Science Foundation of China (51676149)

摘要

采用数值求解三维雷诺平均Navier-Stokes(RANS)方程和k-ω湍流模型,研究了间隙位置和几何对燃气轮机叶片端壁冷却性能的影响。在验证数值方法正确性的基础上,研究了3种间隙位置对端壁气膜冷却性能的影响,并提出了3种渐缩梯形间隙结构,分析了渐缩间隙结构对端壁流动和冷却特性的影响。结果表明,间隙距叶片前缘距离的增大会降低叶片前缘附近马蹄涡影响区域的气膜有效度,但是,当质量流量比大于1.0%时,端壁气膜有效度分布均匀性提高。在质量流量比为0.5%时,间隙位于距叶片前缘0.1倍轴向弦长位置时,会发生主流入侵的现象。相比于原始间隙,3种渐缩梯形间隙均能够显著提高端壁气膜有效度。特别是质量流量比为1%时,3种渐缩梯形间隙使得端壁平均气膜有效度最大增大了105.36%。此外,渐缩梯形间隙还防止了在质量流量比为0.5%时,主流入侵的发生。

本文引用格式

祝培源 , 宋立明 , 李军 , 丰镇平 . 间隙位置和几何对端壁冷却性能的影响[J]. 航空学报, 2017 , 38(9) : 520942 -520942 . DOI: 10.7527/S1000-6893.2017.620942

Abstract

The effects of the location and geometry of the upstream slot on the end-wall film cooling performance of a gas turbine blade are numerically investigated by solving three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equations coupled with the k-ω turbulence model. Based on the accuracy validation of the numerical method, the effects of three slot locations on the film cooling effectiveness of the end-wall are numerically analyzed. Three convergent trapezoid slot models are proposed, and the effect of these models on the end-wall flow and cooling characteristics are investigated. The results indicate that the increase of the distance between the slot and the blade leading edge reduced the film cooling effectiveness of the region near the leading edge influenced by the horseshoe vortex, but when the mass flow ratio (M) is larger than 1.0%, the uniformity of the film cooling effectiveness distribution is improved. When M=0.5%, the slot locating at the position 0.1 times axial chord away from the blade leading edge resulted in the ingestion of mainstream flow. Comparing with the nominal slot, the three convergent trapezoid slot models improved the end-wall film cooling effectiveness significantly. Especially for M=1.0%, the greatest improvement of end-wall average film cooling effectiveness is as much as 105.36% with the convergent trapezoid slot models. Besides, the models prevented the ingestion of mainstream flow when M=0.5%.

参考文献

[1] 丁阳, 常海萍. 涡轮叶片冷却有效性分析[J]. 航空学报, 2013, 34(1):46-51. DING Y, CHANG H P. Analysis of turbine blade cooling effectiveness[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):46-51(in Chinese).
[2] HAN J C, DUTTA S, EKKAD S V. 燃气轮机传热和冷却技术[M]. 程代京, 谢永慧, 译. 西安:西安交通大学出版社, 2005:1-6. HAN J C, DUTTA S, EKKAD S V. Gas turbine heat transfer and cooling technology[M]. CHENG D J, XIE Y H, translated. Xi'an:Xi'an Jiaotong University Press, 2005:1-6(in Chinese).
[3] 刘存良, 朱惠人, 白江涛, 等. 涡轮叶片上收缩-扩张形孔排的全表面气膜冷却特性[J]. 航空学报, 2010, 31(4):687-693. LIU C L, ZHU H R, BAI J T, et al. Experimental research on film cooling characteristics of converging-expanding hole rows on turbine blade surface[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4):687-693(in Chinese).
[4] 姚玉, 张靖周, 何飞, 等. 涡轮叶片吸力面上收敛缝形孔气膜冷却效率的数值研究[J]. 航空学报, 2010, 31(6):1115-1120. YAO Y, ZHANG J Z, HE F, et al. Numerical investigation on film cooling effectiveness of converging slot hole at turbine blade suction surface[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1115-1120(in Chinese).
[5] PAPA M, GOLDSTEIN R J, GORI F. Numerical heat transfer predictions and mass/heat transfer measurements in a linear turbine cascade[J]. Applied Thermal Engineering, 2007, 27(4):771-778.
[6] 吴康, 林立, 任静, 等. 端壁侧向出流对透平轮缘密封的影响及优化[J]. 推进技术, 2014, 35(6):758-765. WU K, LIN L, REN J, et al. Analysis and optimization of interaction between endwall flank flow and turbine rotor-stator rim seal[J]. Journal of Propulsion Technology, 2014, 35(6):758-765(in Chinese).
[7] 高庆, 陶加银, 宋立明, 等. 涡轮轮缘密封封严效率的数值研究[J]. 西安交通大学学报, 2013, 47(5):12-17. GAO Q, TAO J Y, SONG L M, et al. Numerical investigation on the sealing efficiency of the turbine rim seal[J]. Journal of Xi'an Jiaotong University, 2013, 47(5):12-17(in Chinese).
[8] THOLE K A, KNOST D G. Heat transfer and film-cooling for the endwall of a first stage turbine vane[J]. International Journal of Heat and Mass Transfer, 2005, 48(25):5255-5269.
[9] BURD S W, SATTEMESS C J, SIMON T W. Effects of slot bleed injection over a contoured endwall on nozzle guide vane cooling performance:Part Ⅰ-Flow field measurements:GT2000-199[R]. New York:ASME, 2000.
[10] BURD S W, SATTEMESS C J, SIMON T W. Effects of slot bleed injection over a contoured endwall on nozzle guide vane performance:Part Ⅱ-Thermal measurements:GT2000-200[R]. New York:ASME, 2000.
[11] LYNCH S P, THOLE K A. The effect of combustor-turbine interface gap leakage on the endwall heat transfer for a nozzle guide vane[J]. Journal of Turbomachinery, 2008, 130(4):041019.
[12] LYNCH S P, THOLE K A. The effect of the combustor-turbine slot and mid-passage gap on vane endwall heat transfer[J]. Journal of Turbomachinery, 2011, 133(4):041002.
[13] CARDWELL N D, SUNDARAM N, THOLE K A. The effects of varying the combustor-turbine gap[J]. Journal of Turbomachinery, 2007, 129(4):756-764.
[14] PAPA M, SRINIVASAN V, GOLDSTEIN R J. Film cooling effect of rotor-stator purge flow on endwall heat/mass transfer[J]. Journal of Turbomachinery, 2012, 134(4):041014.
[15] BARIGOZZI G, FRANCHINI G, PERDICHIZZI A, et al. Influence of purge flow injection angle on the aerothermal performance of a rotor blade cascade[J]. Journal of Turbomachinery, 2014, 136(4):041012.
[16] LI S J, LEE J, HAN J C, et al. Turbine platform cooling and blade suction surface phantom cooling from simulated swirl purge flow:GT2015-42263[R]. New York:ASME, 2015.
[17] LI S J, LEE J, HAN J C, et al. Influence of mainstream turbulence on turbine blade platform cooling from simulated swirl purge flow[J]. Applied Thermal Engineering, 2016, 101(25):678-685.
[18] SONG L M, ZHU P Y, LI J, et al. Effect of purge flow on endwall flow and heat transfer characteristics of a gas turbine blade[J]. Applied Thermal Engineering, 2017, 110(5):504-520.
[19] 张扬, 袁新. 攻角对端壁缝隙泄漏流气膜冷却的影响[J]. 工程热物理学报, 2012, 33(12):2080-2083. ZHANG Y, YUAN X. Turbine endwall film cooling with combustor-turbine interface gap leakage flow:Effect of incidence angle[J]. Journal of Engineering Thermophysics, 2012, 33(12):2080-2083(in Chinese).
[20] 杜昆, 李军, 晏鑫. 槽缝射流对静叶端壁冷却性能的影响[J]. 西安交通大学学报, 2015, 49(1):21-26. DU K, LI J, YAN X. Effect of the slot jet impingement on the cooling performance of the vane endwall[J]. Journal of Xi'an Jiaotong University, 2015, 49(1):21-26(in Chinese).

文章导航

/