电子电气工程与控制

一种基于多普勒频率的恒模信号直接定位方法

  • 王鼎 ,
  • 尹洁昕 ,
  • 吴志东 ,
  • 刘瑞瑞
展开
  • 1. 解放军信息工程大学 信息系统工程学院, 郑州 450001;
    2. 国家数字交换系统工程技术研究中心, 郑州 450002

收稿日期: 2016-12-30

  修回日期: 2017-03-15

  网络出版日期: 2017-04-01

基金资助

国家自然科学基金(61201381);中国博士后科学基金(2016M592989);信息工程大学优秀青年基金(2016603201)

Direct localization method for constant modulus source based on Doppler frequency shifts

  • WANG Ding ,
  • YIN Jiexin ,
  • WU Zhidong ,
  • LIU Ruirui
Expand
  • 1. School of Information Systems Engineering, PLA Information Engineering University, Zhengzhou 450001, China;
    2. National Digital Switching System Engineering & Technological Research Center, Zhengzhou 450002, China

Received date: 2016-12-30

  Revised date: 2017-03-15

  Online published: 2017-04-01

Supported by

National Natural Science Foundation of China (61201381);China Postdoctoral Science Foundation (2016M592989);The Outstanding Youth Foundation of Information Engineering University (2016603201)

摘要

相比于传统的差分多普勒(DD)两步定位方法,以Amar和Weiss提出的基于多普勒频率的单步直接定位方法在低信噪比和小样本条件下具有更高的定位精度。在该类新型定位体制的基础上,提出了一种基于多普勒频率的恒模信号直接定位方法。首先,依据最大似然(ML)准则以及恒模信号的恒包络特征,建立相应的直接定位优化模型。然后,根据目标函数的代数特征将全部未知参量分成两组,并提出一种有效的多参量交替迭代算法,用以获得该优化问题的最优数值解。新算法包含了针对这两组未知参量的Newton型迭代公式,用以避免网格搜索,并能实现多维参数的"解耦合"估计。最后,推导出针对恒模信号的目标位置直接估计方差的克拉美罗界(CRB)。数值实验验证了新方法的优越性。

本文引用格式

王鼎 , 尹洁昕 , 吴志东 , 刘瑞瑞 . 一种基于多普勒频率的恒模信号直接定位方法[J]. 航空学报, 2017 , 38(9) : 321084 -321084 . DOI: 10.7527/S1000-6893.2017.321084

Abstract

Compared with the conventional Differential Doppler (DD) localization method, the Direct Position Determination (DPD) method proposed by Amar and Weiss has higher position estimation accuracy under the condition of low Signal-to-Noise Ratio (SNR) and small number of samples. Based on this novel localization mechanism, a new DPD method using Doppler frequency shifts is presented for the constant modulus source. The DPD optimization model is constructed based on the Maximum Likelihood (ML) criterion as well as the constant modulus property of the source. All the unknowns are then classified into two groups according to the algebraic characteristic of the cost function, and an effective alternating iteration algorithm is presented to solve this DPD optimization problem numerically. In the proposed algorithm, two Newton-type iterative steps are devised for the two groups of unknowns, and then the grid search can be avoided and the multidimensional parameters are decoupled. The Cramér-Rao Bound (CRB) on the direct position estimation variance for constant modulus source is derived. Simulation results corroborate the good performance of the proposed method.

参考文献

[1] YANG K, AN J P, BU X Y, et al. Constrained total least-squares location algorithm using time-difference-of-arrival measurements[J]. IEEE Transactions on Vehicular Technology, 2010, 59(3): 1558-1562.
[2] YU H G, HUANG G M, GAO J, et al. An efficient constrained weighted least squares algorithm for moving source location using TDOA and FDOA measurements[J]. IEEE Transactions on Wireless Communications, 2012, 11(1): 44-47.
[3] HO K C, SUN M. Passive source localization using time differences of arrival and gain ratios of arrival[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 464-477.
[4] KUTLUYIL D. Bearings-only target localization using total least squares[J]. Signal Processing, 2005, 85(9): 1695-1710.
[5] CHEUNG K W, SO H C, MA W K, et al. Least squares algorithms for time-of-arrival-based mobile location[J]. IEEE Transactions on Signal Processing, 2004, 52(4): 1121-1128.
[6] MASON J. Algebraic two-satellite TOA/FOA position solution on an ellipsoidal earth[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(7): 1087-1092.
[7] RAHMAN M Z, KLEEMAN L. Paired measurement localization: A robust approach for wireless localization[J]. IEEE Transactions on Mobile Computing, 2009, 8(8): 1087-1102.
[8] HO K C, CHAN Y T. An asymptotically unbiased estimator for bearings-only and Doppler-bearing target motion analysis[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 809-822.
[9] YANG L, SUN M, HO K C. Doppler-bearing tracking in the presence of observer location error[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 4082-4087.
[10] WEISS A J. Direct position determination of narrowband radio frequency transmitters[J]. IEEE Signal Processing Letters, 2004, 11(5): 513-516.
[11] WEISS A J, AMAR A. Direct position determination of multiple radio signals[J]. EURASIP Journal on Applied Signal Processing, 2005(1): 37-49.
[12] AMAR A, WEISS A J. Direct position determination in the presence of model errors-Known waveforms[J]. Digital Signal Processing, 2006, 16(1): 52-83.
[13] AMAR A, WEISS A J. A decoupled algorithm for geolocation of multiple emitters[J]. Signal Processing, 2007, 87(10): 2348-2359.
[14] AMAR A, WEISS A J. Localization of narrowband radio emitters based on Doppler frequency shifts[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5500-5508.
[15] SHALOM B O, WEISS A J. Direct position determination using MIMO radar[C]//Proceedings of the IEEE 25th Convention of Electrical and Electronics Engineers. Piscataway, NJ: IEEE Press, 2008: 575-579.
[16] SHALOM B O, WEISS A J. Efficient direct position determination of orthogonal frequency division multiplexing signals[J]. IET Radar, Sonar and Navigation, 2009, 3(2): 101-111.
[17] REUVEN A M, WEISS A J. Direct position determination of cyclostationary signals[J]. Signal Processing, 2009, 89(12): 2448-2464.
[18] OISPUU M, NICKEL U. Direct detection and position determination of multiple sources with intermittent emission[J]. Signal Processing, 2010, 90(12): 3056-3064.
[19] WEISS A J. Direct geolocation of wideband emitters based on delay and Doppler[J]. IEEE Transactions on Signal Processing, 2011, 59(6): 2513-5520.
[20] 张敏, 郭福成, 周一宇. 基于单个长基线干涉仪的运动单站直接定位[J]. 航空学报, 2013, 34(2): 378-386. ZHANG M, GUO F C, ZHOU Y Y. A single moving observer direct position determination method using a long baseline interferometer[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 378-386 (in Chinese).
[21] 张敏, 郭福成, 周一宇, 等. 运动单站干涉仪相位差直接定位方法[J]. 航空学报, 2013, 34(9): 2185-2193. ZHANG M, GUO F C, ZHOU Y Y, et al. A single moving observer direct position determination method using interferometer phase difference[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2185-2193 (in Chinese).
[22] POURHOMAYOUN M, FOWLER M L. Distributed computation for direct position determination emitter location[J]. IEEE Transactions on Aerospace and Electronic Sustems, 2014, 50(4): 2878-2889.
[23] LI J Z, YANG L, GUO F C, et al. Coherent summation of multiple short-time signals for direct positioning of a wideband source based on delay and Doppler[J]. Digital Signal Processing, 2016, 48(1): 58-70.
[24] TIRER T, WEISS A J. High resolution direct position determination of radio frequency sources[J]. IEEE Signal Processing Letters, 2016, 23(2): 192-196.
[25] TZAFRI L, WEISS A J. High-resolution direct position determination using MVDR[J]. IEEE Transactions on Wireless Communications, 2016, 15(9): 6449-6461.
[26] 王鼎, 张刚, 沈彩耀, 等. 一种针对恒模信号的运动单站直接定位算法[J]. 航空学报, 2016, 37(5): 1622-1633. WANG D, ZHANG G, SHEN C Y, et al. A direct position determination algorithm for constant modulus signals with single moving observer[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1622-1633 (in Chinese).
[27] VAN DER VEEN A, PAULRAJ A. An analytical constant modulus algorithm[J]. IEEE Transactions on Signal Processing, 1996, 44(5): 1136-1155.
[28] LESHEM A, VEEN A J. Direction-of-arrival estimation for constant modulus signals[J]. IEEE Transactions on Signal Processing, 1999, 47(11): 3125-3129.
[29] STOICA P, BESSON O. Maximum likelihood DOA estimation for constant-modulus signal[J]. Electronic Letter, 2000, 36(9): 849-851.
[30] SEE C M S. Method for array calibration in high-resolution sensor array processing[J]. IEE Proceedings on Radar, Sonar and Navigation, 1995, 142(3): 90-96.
[31] DING W. Improved active calibration algorithms in the presence of channel gain/phase uncertainties and sensor mutual coupling effects[J]. Circuits, Systems, and Signal Processing, 2015, 34(6): 1825-1868.
[32] FRIEDLANDER B, WEISS A J. Direction finding in the presence of mutual coupling[J]. IEEE Transactions on Antennas and Propagation, 1991, 39(3): 273-284.
[33] STOICA P, LARSSON E G. Comments on "Linearization method for finding Cramér-Rao bounds in signal processing"[J]. IEEE Transactions on Signal Processing, 2001, 49(12): 3168-3169.
[34] PESAVENTO M, GERSHMAN A B, WONG K M. Direction finding in partly-calibrated sensor arrays composed of multiple subarrays[J]. IEEE Transactions on Signal Processing, 2002, 55(9): 2103-2115.

文章导航

/