流体力学与飞行力学

振动激发对激波反射的影响

  • 彭俊 ,
  • 张子健 ,
  • 周凯 ,
  • 胡宗民 ,
  • 姜宗林
展开
  • 1. 中国科学院力学研究所 高温气体动力学国家重点实验室, 北京 100190;
    2. 中国科学院大学 工程科学学院, 北京 100049

收稿日期: 2016-12-15

  修回日期: 2017-01-04

  网络出版日期: 2017-03-23

基金资助

国家自然科学基金(11672308,11532014)

Effects of vibration excitation on shock reflections

  • PENG Jun ,
  • ZHANG Zijian ,
  • ZHOU Kai ,
  • HU Zongmin ,
  • JIANG Zonglin
Expand
  • 1. State Key Laboratory of High-temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
    2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2016-12-15

  Revised date: 2017-01-04

  Online published: 2017-03-23

Supported by

National Natural Science Foundation of China (11672308,11532014)

摘要

定常激波反射分为规则反射和马赫反射,在不同条件下2种反射结构之间会相互转变。高超声速流动中的激波反射问题常面临高温气体效应,随着温度逐渐升高,最先出现的是空气分子振动激发。通过理论分析和定量计算,研究了振动激发对激波反射及其转变规律的影响。首先给出考虑振动激发的空气热力学模型,并分析其与量热完全气体的差异以及对激波关系的影响;接着分析在规则反射和马赫反射中,振动激发对激波反射流场的影响规律;最后讨论振动激发对激波反射转变2个准则点的影响。研究结果表明,振动激发使激波极线的整体轮廓变大,且这种差异在经过一次激波反射之后被明显放大,会对激波反射的流场产生重大影响;对于激波反射的转变,振动激发使转变的2个准则点都变大,且对规则反射向马赫反射转变的脱体准则影响更大。

本文引用格式

彭俊 , 张子健 , 周凯 , 胡宗民 , 姜宗林 . 振动激发对激波反射的影响[J]. 航空学报, 2017 , 38(8) : 121055 -121055 . DOI: 10.7527/S1000-6893.2017.121055

Abstract

Steady shock reflections include regular reflection and Mach reflection, which can transit to each other under critical conditions. High-temperature gas effect is inevitable in hypersonic shock reflections. As temperature increases, the vibration excitation of air molecules comes first. Theoretical analysis and quantitative calculation are conducted to study the effects of vibration excitation on shock reflections and the transitions between regular reflection and Mach refection. A thermodynamic model for air with vibration excitation is presented and then compared with the calorically perfect gas model. The influences of vibration excitation on shock relations, on the flow fields in regular reflection and Mach reflection, and on the transition criteria between them are analyzed. The results show that vibration excitation may enlarge the overall profile of the shock polar as compared with the shock polar in the calorically perfect gas. In addition, the difference in the overall polar profiles is amplified significantly for the reflected shock, and may alter the reflection configuration. Regarding the shock reflection transition criteria, vibration excitation may cause increases of both transition angles, i.e., the detachment criterion and von Neumann criterion, and the increment of the former is much larger than the latter.

参考文献

[1] BEN-DOR G. Shock wave reflection phenomena[M]. 2nd ed. Berlin:Springer-Verlag Press, 2007.
[2] LI H, BEN-DOR G. Analysis of double-Mach-reflection wave configuration with convexly curved Mach stems[J]. Shock Waves, 1999, 9(5):319-326.
[3] VASILEY E I, BEN-DOR G, ELPERIN T, et al. The wall-jetting effect in Mach reflection:Navier Stokes simulations[J]. Journal of Fluid Mechanics, 2004, 511:363-379.
[4] TESDALL A M, HUNTER J K. Self-similar solutions for weak shock reflection[J]. SIAM Journal on Applied Mathematics, 2002, 63(1):42-61.
[5] SKEWS B W, LI G, PATON R. Experiments on Guderley Mach reflection[J]. Shock Waves, 2009, 19(2):95-102.
[6] MORIOKA T, SUZUKI Y, HONMA H. Radiation observation of strong shock wave reflection in air[C]//22th International Symposium on Shock Waves. London:Imperial College, 2000:1201-1206.
[7] BEN-DOR G. A state-of-the-knowledge review on pseudo-steady shock-wave reflections and their transition criteria[J]. Shock Waves, 2006, 15(3):277-294.
[8] VASILEY E I, ELPERIN T, BEN-DOR G. Analytical reconsideration of the von Neumann paradox in the reflection of a shock wave over a wedge[J]. Physics of Fluids, 2008, 20(4):819-299.
[9] VON NEUMANN J. Oblique reflection of shocks:Explosion research report 12[R]. Washington, D.C.:Navy Department, 1943.
[10] VON NEUMANN J. Refraction, intersection and reflection of shock waves:NAVORD Report 203-45[R]. Washington, D.C.:Navy Department, 1943.
[11] ANDERSON J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston, VA:AIAA, 2006:385-386.
[12] KIM H D, SETOGUCHI T. Shock induced boundary layer separation[C]//8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows, 2007.
[13] HEISER W, PRATT D, DALEY D, et al. Hypersonic airbreathing propulsion[M]. Reston, VA:AIAA, 1994.
[14] GOONKO Y P, LATYPOV A F, MAZHUL I I, et al. Structure of flow over a hypersonic inlet with side compression wedges[J]. AIAA Journal, 2015, 41(3):436-447.
[15] KLEINE H, SETTLES G S. The art of shock waves and their flowfields[J]. Shock Waves, 2008, 17(5):291-307.
[16] JIANG Z L, TAKAYAMA K. Reflection and focusing of toroidal shock waves from coaxial annular shock tubes[J]. Computers and Fluids, 2013, 27(5-6):553-562.
[17] JACKSON S, GRUNTHANER M, SHEPHERD J. Wave implosion as an initiation mechanism for pulse detonation engines:AIAA-2003-4820[R]. Reston, VA:AIAA, 2003.
[18] IZUMI K, ASO S, NISHIDA M. Experimental and computational studies focusing process of shock waves reflected from parabolic reflectors[J]. Shock Waves, 1994, 3(3):213-222.
[19] 滕宏辉, 张德良, 李辉煌, 等. 用环形激波聚焦实现爆轰波直接起爆的数值模拟[J]. 爆炸与冲击, 2005, 25(6):512-518. TENG H H, ZHANG D L, LI H H, et al. Numerical investigation of detonation direct initiation induced by toroidal shock wave focusing[J]. Explosion and Shock Waves, 2005, 25(6):512-518(in Chinese).
[20] 姜宗林. 触摸高温气体动力学[J]. 力学与实践, 2006, 28(5):1-7. JIANG Z L. Feeling high temperature gas dynamics[J]. Mechanics in Engineering, 2006, 28(5):1-7(in Chinese).
[21] 樊菁. 高超声速高温气体效应判据[J]. 力学学报, 2010, 42(4):591-596. FAN J. Criteria on high-temperature gas effects around hypersonic vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4):591-596(in Chinese).
[22] 杨旸, 姜宗林, 胡宗民. 激波反射现象的研究进展[J]. 力学进展, 2012, 42(2):141-161. YANG Y, JIANG Z L, HU Z M. Advances in shock wave reflection phenomena[J]. Advances in Mechanics, 2012, 42(2):141-161(in Chinese).
[23] TARNAVSKⅡ G A. Influence of flow angularities in a hypersonic ramjet diffuser of the formation of the shock-wave structure of the real gas flow[J]. Journal of Engineering Physics and Thermophysics, 2004, 77(3):651-662.
[24] 高云亮, 李进平, 胡宗民, 等. 准定常强激波马赫反射波形的数值模拟[J]. 空气动力学学报, 2008, 26(4):456-461. GAO Y L, LI J P, HU Z M, et al. A numerical investigation on the Mach reflection patterns of quasi-steady strong shock waves[J]. Acta Aerodynamica Sinica, 2008, 26(4):456-461(in Chinese).
[25] 李季. 高温非平衡效应下的激波干扰与激波反射[D]. 合肥:中国科学技术大学, 2015. LI J. On shock interactions and reflections with high temperature non-equilibrium effects[D]. Hefei:University of Science and Technology of China, 2015(in Chinese).
[26] MACH E. Uber den verlauf von funkenwellen in der ebene und im raume[J]. Sitzugsbr Akad Wiss Wien, 1878, 78:819-838.
[27] 汪志诚. 热力学·统计物理[M]. 第四版. 北京:高等教育出版社, 2008:208. WANG Z C. Thermodynamics and statistical physics[M]. 4th ed. Beijing:Higher Education Press, 2008:208(in Chinese).
[28] KAWAMURA R, SAITO H. Reflection of shock waves-1:Pseudo-stationary case[J]. Journal of Physical Society Japan, 1956, 11(5):584-592.
[29] KIM K H, KIM C, RHO O H. Methods for the accurate computations of hypersonic flows:I. AUSMPW+ scheme[J]. Journal of Computational Physics, 2001, 174(1):81-119.
[30] KIM K H, LEE J H, RHO O H. An improvement of AUSM schemes by introducing the pressure-based weight functions[J]. Computers & Fluids, 1998, 27(3):311-346.
[31] YOON S, JAMESON A. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 2012, 26(9):1025-1026.
[32] LEER B V. Towards the ultimate conservative difference scheme:V. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136.

文章导航

/