流体力学与飞行力学

航空发动机进气支板电热防冰试验

  • 雷桂林 ,
  • 郑梅 ,
  • 董威 ,
  • 周志翔 ,
  • 董奇
展开
  • 1. 上海交通大学 机械与动力工程学院, 上海 200240;
    2. 中国航发湖南动力机械研究所, 株洲 412002

收稿日期: 2016-12-20

  修回日期: 2017-01-20

  网络出版日期: 2017-03-20

基金资助

国家"973"计划(2015CB755800);国家自然科学基金(11572195,51076103)

Test on electrothermal anti-icing of aero-engine inlet strut

  • LEI Guilin ,
  • ZHENG Mei ,
  • DONG Wei ,
  • ZHOU Zhixiang ,
  • DONG Qi
Expand
  • 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. AECC Hunan Powerplant Research Institute, Zhuzhou 412002, China

Received date: 2016-12-20

  Revised date: 2017-01-20

  Online published: 2017-03-20

Supported by

National Basic Research Program of China (2015CB755800);National Natural Science Foundation of China (11572195,51076103)

摘要

为了研究电加热防冰的效果,开展了小型航空发动机进气支板的电加热防冰试验。结合该型号发动机进气支板的结构特点,设计了3种电热防冰加热布置方式,分别在支板沿轴向的不同位置采用1~3个电加热棒作为防冰热源。通过模拟不同的发动机进气结冰环境参数和电加热功率,在冰风洞中对3种电加热方式进行了防冰试验研究。通过布置在支板外表面的温度测点记录了防冰过程中支板表面的瞬态温度变化,分析了支板防冰过程中表面温度的变化特点。防冰试验研究了热源总功率、热源布置方式、液态水含量以及来流温度对支板防冰性能的影响。试验结果表明,合理的电加热方式可以取得较好的防冰效果,同时避免支板后部的溢流水结冰。

本文引用格式

雷桂林 , 郑梅 , 董威 , 周志翔 , 董奇 . 航空发动机进气支板电热防冰试验[J]. 航空学报, 2017 , 38(8) : 121066 -121066 . DOI: 10.7527/S1000-6893.2017.121066

Abstract

To study the performance of electrothermal anti-icing, a test on the inlet strut of the small aero-engine is carried out. According to the structural features of this type of aero-engine inlet strut, three heating arrangement modes of the electrothermal anti-icing system are designed, which adopt one to three electrical heating rods as the heat sources at different locations along the direction of the strut chord length. The three heating modes are tested in the icing wind tunnel with different icing environment and electrical heating power. The measuring points are set on the strut surface to record the transient temperature change during the anti-icing process. As a result, the characteristics of temperature change on the strut surface during the anti-icing tests can be analyzed. The effect of the electrothermal power, the heating modes, the liquid water content and the oncoming airflow temperature on the anti-icing performance of the strut are all investigated experimentally. The results show that a reasonable electrical heating mode can achieve better anti-icing performance and the runback ice can be also avoided near the strut tailing edge.

参考文献

[1] WRIGHT W B, KEITH J T G, DEWITT K J. Two-dimensional simulation of electrothermal deicing of aircraft components[J]. Journal of Aircraft, 1989, 26(6):554-562.
[2] HENRY R. Development of an electrothermal de-icing/anti-icing model:AIAA-1992-0526[R]. Reston, VA:AIAA, 1992.
[3] YASLIK A D, DEWITT K J, KEITH J T G, et al. Three-dimensional simulation of electrothermal deicing systems[J]. Journal of Aircraft, 1992, 29(6):1035-1042.
[4] HUANG J R, KEITH J T G, DE W T J. Numerical simulation of an electrothermally de-iced aircraft surface using the finite element method:AIAA-1991-0268[R]. Reston, VA:AIAA, 1991.
[5] REID T, BARUZZI G S, HABASHI W G. Fensap-ice:Unsteady conjugate heat transfer simulation of electrothermal de-icing[J]. Journal of Aircraft, 2012, 49(4):1101-1109.
[6] POURBAGIAN M, HABASHI W G. Aero-thermal optimization of in-flight electro-thermal ice protection systems in transient de-icing mode[J]. International Journal of Heat and Fluid Flow, 2015, 54:167-182.
[7] FAKOREDE O, IBRAHIM H, ILINCA A, et al. Experimental investigation of power requirements for wind turbines electrothermal anti-icing systems[M]. Rijeka:InTech, 2016.
[8] BUSCHHORN S T, KESSLER S, LACHMANN N, et al. Electrothermal icing protection of aerosurfaces using conductive polymer nanocomposites:AIAA-2013-1729[R]. Reston, VA:AIAA, 2013.
[9] 常士楠, 艾素霄, 霍西恒, 等. 改进的电热除冰系统仿真[J]. 航空动力学报, 2008, 13(10):1753-1758. CHANG S N, AI S X, HUO X H, et al. Improved simulation of electrothermal de-icing system[J]. Journal of Aerospace Power, 2008, 13(10):1753-1758(in Chinese).
[10] 杨诗雨, 常士楠, 高艳欣, 等. 旋转帽罩电加热防冰瞬态过程研究[J]. 空气动力学学报, 2016, 34(3):289-294. YANG S Y, CHANG S N, GAO Y X, et al. Investigation of rotary cone electric heating anti-icing transient process[J]. Acta Aerodynamic Sinica, 2016, 34(3):289-294(in Chinese).
[11] 胡娅萍. 航空发动机进口部件积冰的数值模拟研究[D]. 南京:南京航空航天大学, 2008. HU Y P. Numerical simulation of ice accretion on aero-engine entry components[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2008(in Chinese).
[12] BU X, LIN G, YU J, et al. Numerical simulation of an airfoil electrothermal anti-icing system[J]. Proceeding of Institution of Mechaniced Engineers Part G:Journal of Aeronspace Engineering, 2012, 227(10):1608-1622.
[13] 钟国. 翼型电热防/除冰系统的数值模拟[J]. 航空制造技术, 2011, 520(4):75-79. ZHONG G. Simulation of airfoil electro-thermal anti-ice/de-ice system[J]. Aeronautical Manufacturing Technology, 2011, 520(4):75-79(in Chinese).
[14] DONG W, ZHU J J, ZHOU Z X, et al. Heat transfer and temperature analysis of an aeroengine strut under icing conditions[J]. Journal of Aircraft, 2015, 52(1):216-225.
[15] 董威, 朱剑鋆, 周志翔, 等. 航空发动机支板热滑油防冰性能试验[J]. 航空学报, 2014, 35(7):1845-1853. DONG W, ZHU J J, ZHOU Z X, et al. Test on performance of an aero-engine strut hot lubrication oil anti-icing system[J]. Acta Aeronautica et Astronuatica Sinica, 2014, 35(7):1845-1853(in Chinese).
[16] 肖春华, 桂业伟, 杜雁霞, 等. 电热除冰传热特性的结冰风洞实验研究[J]. 实验流体力学, 2010, 24(4):21-24. XIAO C H, GUI Y W, DU Y X, et al. Experimental study on heat transfer characteristics of aircraft electrothermal deicing in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4):21-24(in Chinese).
[17] LEI G L, DONG W, ZHU J J, et al. A new melting model in electrothermal de-icing simulation:GT2015-42555[R]. New York:ASME, 2015.
[18] LEI G L, DONG W, ZHU J J, et al. Numerical investigation of the electrothermal de-icing process of a rotor blade:2015-01-2[R]. Warrendale, PA:SAE, 2015.
[19] LEI G L, DONG W, ZHENG M, et al. Numerical investigation on heat transfer and melting process of ice with different porosities[J]. International Journal of Heat and Mass Transfer, 2016, 107:934-944.
[20] 朱光亚. 电加热防冰部件加热功率的分布特性研究[D]. 南京:南京航空航天大学, 2014. ZHU G Y. Study on heat power distribution characteristic for aircraft anti-ice components[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[21] 马辉, 张大林, 孟繁鑫, 等. 复合材料部件电加热防冰性能试验[J]. 航空学报, 2013, 34(8):1846-1853. MA H, ZHANG D L, MENG F X, et al. Experimental of electro-thermal anti-icing on a composite assembly[J]. Acta Aeronuatica et Astronuatica Sinica, 2013, 34(8):1846-1853(in Chinese).
[22] 霍西恒, 屠敏, 常士楠, 等. CJ818客机尾翼周期电热除冰系统计算分析[J]. 民用飞机设计与研究, 2009(S1):126-130. HUO X H, TU M, CHANG S N, et al. Cycle electrothermal de-icing system analysis of CJ818 aircraft tail[J]. Civil Aircraft Design and Research, 2009(S1):126-130(in Chinese).
[23] 李清英, 朱春玲, 白天. 电脉冲除冰系统的除冰实验与数值模拟[J]. 航空动力学报, 2012, 27(2):350-355. LI Q Y, ZHU C L, BAI T. De-icing experimental and numerical simulation of the electro-impulse de-icing system[J]. Journal of Aerospace Power, 2012, 27(2):350-355(in Chinese).

文章导航

/