流体力学与飞行力学

考虑放宽静稳定度的民用客机气动优化设计

  • 李立 ,
  • 白俊强 ,
  • 郭同彪 ,
  • 陈颂
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 湖北航天飞行器研究所, 武汉 430040

收稿日期: 2017-01-07

  修回日期: 2017-02-16

  网络出版日期: 2017-02-22

基金资助

国家"973"计划(2014CB744804)

Aerodynamic optimization design for civil aircraft considering relaxed static stability

  • LI Li ,
  • BAI Junqiang ,
  • GUO Tongbiao ,
  • CHEN Song
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Hubei Space Vehicle Research Institute, Wuhan 430040, China

Received date: 2017-01-07

  Revised date: 2017-02-16

  Online published: 2017-02-22

Supported by

National Basic Research Program of China (2014CB744804)

摘要

为了更加有效地减小民用客机考虑配平约束后的阻力,针对典型跨声速民用客机机翼-机身-平尾构型研究了不同静稳定度下的气动优化设计,并总结出在民用客机的减阻设计中考虑放宽静稳定度具有较大的减阻潜力。通过自由型面变形(FFD)技术对全机外形进行参数化,实现机翼型面的变形,进行气动优化设计并改变平尾的偏转保证全机能够力矩配平。采用基于雷诺平均Navier-Stokes(RANS)方程的离散伴随方法求解目标函数对设计变量的梯度,然后基于序列二次规划算法进行基于梯度的气动优化设计。基于CRM(Common Research Model)构型,针对不同参考重心位置进行了考虑配平约束的减阻优化设计研究,验证了优化设计系统的有效性,算例结果表明,随着重心位置后移即放宽静稳定度,优化构型配平阻力减小,外翼段前缘吸力峰值明显降低且双激波的强度得到有效减弱,此外机翼的升力系数分布更加贴合最佳升力系数分布。

本文引用格式

李立 , 白俊强 , 郭同彪 , 陈颂 . 考虑放宽静稳定度的民用客机气动优化设计[J]. 航空学报, 2017 , 38(9) : 121112 -121112 . DOI: 10.7527/S1000-6893.2017.121112

Abstract

The study on the aerodynamic optimization design of the civil jet wing-body-tail configuration with different static stability is presented, which intends to efficiently reduce the aircraft's total drag considering trimming. It is obtained that considering static stability in drag-reduction design can have great potential of reducing the drag. The Free-Form Deform (FFD) technique is adopted to parameterize the wing shape for aerodynamic optimization design and rotate horizontal tail for trimming the pitching moment of the whole aircraft. The discrete adjoint technique based on Reynolds Averaged Navier-Stokes (RANS) equations is used to solve the gradients of targets with regard to design variables, and sequential quadratic programming is used to conduct the gradient-based optimization design. Based on the Common Research Model (CRM), optimizations considering trimming constraint with different c.g. positions are carried out to reduce aerodynamic drag, and feasibility of the optimization system is confirmed. The results of optimization cases show that when the c.g. position moves backward, the optimization configuration has smaller trim drag, obviously lower negative pressure peak of the leading edge in the outer wing, and weaker shock wave. The distribution of wing spanwise lift coefficient is improved to achieve the optimized design result.

参考文献

[1] LUTZE F H. Trimmed drag considerations[J]. Journal of Aircraft, 1977, 14(6): 544-546.
[2] 许维进, 刘志敏. 重心位置对飞机阻力及其飞行性能的影响[J]. 飞行力学, 1999, 17(1): 54-58. XU W J, LIU Z M. Effect of center-of-gravity position on aircraft drag and flight performance[J]. Flight Dynamics, 1999, 17(1): 54-58 (in Chinese).
[3] SACHS G. Minimum trimmed drag and optimum c.g. position[J]. Journal of Aircraft, 1978, 15(8): 456-459.
[4] 王子方. 放宽静稳定度对平衡阻力影响计算方法探讨[J]. 飞行力学, 1987, 2(3): 18-22. WANG Z F. Influence on the trimmed drag calculation method of relaxing static stability[J]. Flight Dynamics, 1987, 2(3): 18-22 (in Chinese).
[5] 周慧钟, 李忠应. 放宽飞行器纵向静稳定度问题的分析研究[J]. 飞航导弹, 1998(2): 8-13. ZHOU H Z, LI Z Y. Study on relaxing longitudinal static stability of the flying vehicle[J]. Aerodynamic Missile Journal, 1998(2): 8-13 (in Chinese).
[6] 王华友, 李振水, 高亚奎, 等. 某机放宽纵向静稳定度效益分析[J]. 飞行力学, 2007, 25(1): 19-21. WANG H Y, LI Z S, GAO Y K, et al. Effect analysis on basic flight performance for a RLSS aircraft[J]. Flight Dynamics, 2007, 25(1): 19-21 (in Chinese).
[7] 冯小刚, 李俨, 崔永青. 民机放宽静稳定性的研究[J]. 电子设计工程, 2013, 21(19): 118-122. FENF X G, LI Y, CUI Y Q. Research on relaxed static stability of civil aircraft[J]. Electronic Design Engineering, 2013, 21(19): 118-122 (in Chinese).
[8] 熊俊涛, 乔志德, 杨旭东, 等. 基于黏性伴随方法的跨声速机翼气动优化设计[J]. 航空学报, 2007, 28(2): 281-285. XIONG J T, QIAO Z D, YANG X D, et al. Optimum aerodynamic design of transonic wing based on viscous adjoint method[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 281-285 (in Chinese).
[9] LYU Z J, KENWAY G K W, MARTINS J R R A. Aerodynamic shape optimization investigations of the common research model wing benchmark[J]. AIAA Journal, 2015, 53(4): 968-985.
[10] JAMESON A. Optimum aerodynamic design using CFD and control theory: AIAA-1995-1729-CP[R]. Reston, VA: AIAA, 1995.
[11] REUTHER J, JAMESON A, FARMER J, et al. Aerodynamic shape optimization of complex aircraft configurations via an adjoint formulation: AIAA-1996-0094[R]. Reston, VA: AIAA, 1996.
[12] ECONOMON T D, PALACIOS F, COPELAND S R, et al. SU2: An open-source suite for multiphysics simulation and design[J]. Journal of Aircraft, 2016, 54(3): 828-846.
[13] CARRIER G, DESTARAC D, DUMONT A, et al. Gradient-based aerodynamic optimization with the elsA software[C]//Proceedings of 52nd Aerospace Sciences Meeting-AIAA SciTech 2014. Reston, VA: AIAA, 2014.
[14] SCHWAMBORN D, GERHOLD T, HEINRICH R. The DLR TAU-code: Recent applications in research and industry[C]//Proceedings of the European Conference on Computational Fluid Dynamics, 2006.
[15] 陈颂, 白俊强, 史亚云, 等. 民用客机机翼/机身/平尾构型气动外形优化设计[J]. 航空学报, 2015, 36(10): 3195-3207. CHEN S, BAI J Q, SHI Y Y, et al. Aerodynamics shape optimization design of civil jet wing-body-tail configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3195-3207 (in Chinese).
[16] 左英桃, 傅林, 高正红, 等. 机翼-机身-短舱-挂架外形气动优化设计方法[J]. 航空动力学报, 2013, 28(9): 2009-2015. ZUO Y T, FU L, GAO Z H, et al. Aerodynamic optimization design of wing-body-nacelle-pylon configuration[J]. Journal of Aerospace Power, 2013, 28(9): 2009-2015 (in Chinese).
[17] 唐智礼. 约束最优控制理论及其在气动优化中的应用[J]. 力学学报, 2007, 39(2): 273-277. TANG Z L. Constrained optimum control theory: Application to aerodynamic design[J]. Chinese Journal of Theoretical Applied Mechanics, 2007, 39(2): 273-277 (in Chinese).
[18] 徐兆可, 夏健, 高宜胜. 基于三维非结构网格的连续伴随优化方法[J]. 南京航空航天大学学报, 2015, 47(1): 145-152. XU Z K, XIA J, GAO Y S. Continuous adjoint approach to aerodynamic optimization on 3D unstructured grids[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(1): 145-152 (in Chinese).
[19] 吴文华, 范召林, 陈德华, 等. 基于伴随算子的大飞机气动布局精细优化设计[J]. 空气动力学学报, 2012, 30(6): 719-724. WU W H, FAN Z L, CHEN D H, et al. Adjoint based on high precise aerodynamic shape optimization for transonic civil aircraft[J]. Acta Aerodynamica Sinica, 2012, 30(6): 719-724 (in Chinese).
[20] 李彬, 邓有奇, 唐静, 等. 基于三维非结构混合网格的离散伴随优化方法[J]. 航空学报, 2014, 35(3): 674-686. LI B, DENG Y Q, TANG J, et al. Discrete adjoint optimization method for 3D unstructured grid[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 674-686 (in Chinese).
[21] SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[J]. Computer Graphics, 1986, 20(4): 151-160.
[22] VASSBERG J C, DEHAAN M A, RIVERS S M, et al. Development of a common research model for applied CFD validation studies: AIAA-2008-6919[R]. Reston, VA: AIAA, 2008.
[23] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4): 1194-1213.
[24] SAAD Y, SCHULTZ M H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3): 856-869.
[25] NOCEDAL J, WRIGHT S J. Numerical optimization[M]. New York: Springer, 1999: 526-572.

文章导航

/