材料工程与机械制造

圆锥面等测地曲率曲线的轨迹规划方法

  • 刘永佼 ,
  • 王显峰 ,
  • 肖军
展开
  • 南京航空航天大学 材料科学与技术学院, 南京 210016

收稿日期: 2016-11-01

  修回日期: 2016-11-29

  网络出版日期: 2017-02-16

基金资助

高档数控机床与基础制造装备"科技重大专项(2016ZX04002-001);江苏高校优势学科建设工程资助项目

Trajectory planning method for constant geodesic curvature curve of cone

  • LIU Yongjiao ,
  • WANG Xianfeng ,
  • XIAO Jun
Expand
  • College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2016-11-01

  Revised date: 2016-11-29

  Online published: 2017-02-16

Supported by

Major National Science and Technology Special Projects (2016ZX04002-001);A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

为解决复合材料锥壳铺放过程中的纤维残余应变过大的问题,提出了等测地曲率曲线的轨迹规划方法。通过分析发现轨迹的测地曲率决定了纤维的残余应变,于是通过计算圆锥上任意曲线的测地曲率推导出了等测地曲率曲线的表达式,并证明在圆锥展开面上等测地曲率曲线是圆弧。最后,通过计算等测地曲率轨迹的残余应变及其与圆锥母线的夹角分析该轨迹铺放工艺性。结果表明:等测地曲率轨迹相较于固定角轨迹与测地线轨迹具有良好的可设计性和铺放工艺性。

本文引用格式

刘永佼 , 王显峰 , 肖军 . 圆锥面等测地曲率曲线的轨迹规划方法[J]. 航空学报, 2017 , 38(7) : 420904 -420904 . DOI: 10.7527/S1000-6893.2016.420904

Abstract

To solve the problem of excessive residual strain of fiber in conical shell laying process, a trajectory planning method with constant geodesic curvature is proposed. Analysis shows that the geometric curvature of the trajectory determines the residual strain of the fiber. The expression for the constant curvature curve is then derived by calculating the geometrical curvature of the arbitrary curve on the cone, and the constant geodesic curvature curve is proved to be a circular arc on the conical surface. The trajectory laying process is analyzed by calculating the residual strain of the constant geodesic curvature trajectory and its angle with the conical busbar. The results show that the constant geodesic curvature trajectory is better designability and laying processability than the fixed angle trajectory and the geodesic trajectory.

参考文献

[1] SHIRINZADEH B, CASSIDY G, OETOMO D, et al. Trajectory generation for open-contoured structures in robotic fiber placement[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(4):380-394.
[2] 肖军, 李勇, 李建龙. 自动铺放技术在大型飞机复合材料构件制造中的应用[J]. 航空制造技术, 2008(1):50-53. XIAO J, LI Y, LI J L. Application of automate placement technology in fabrication of composite components for large aircraft[J]. Aeronautical Manufacturing Technology, 2008(1): 50-53 (in Chinese).
[3] 唐见茂. 航空航天复合材料发展现状及前景[J]. 航天器环境工程, 2013, 30(4): 352-359. TANG J M. Current status and trends of advanced composites in aerospace[J]. Spacecraft Environmental Engineering, 2013, 30(4): 352-359 (in Chinese).
[4] 肖军, 李勇, 文立伟, 等. 树脂基复合材料自动铺放技术进展[J]. 中国材料进展, 2009, 28(6): 28-32. XIAO J, LI Y, WEN L W, et al. Progress of automate placement technology for polymer composite[J]. Material China, 2009, 28(6): 28-32 (in Chinese).
[5] 梁宪珠, 张铖. 浅谈降低国内航空复合材料结构成本的途径[J]. 航空制造技术, 2011(3): 40-44. LIANG X Z, ZHANG C. Approaches to reducing cost of composites in domestic aviation[J]. Aeronautical Manufacturing Technology, 2011(3): 40-44 (in Chinese).
[6] 朱晋生, 王卓, 欧峰. 先进复合材料在航空航天领域的应用[J]. 新技术工艺, 2012(9): 76-79. ZHU J S, WANG Z, OU F. Applications of advanced composite materials in aerospace[J]. New Technology & New Process, 2012(9): 76-79 (in Chinese).
[7] 林胜. 自动铺带机/铺丝机(ATL/AFP)—现代大型飞机制造的关键设备(上)[J]. 世界制造技术与装备市场, 2009(4): 84-89. LIN S. ATL/AFP—The key machine for manufacturing of modern large airplane (A)[J]. World Manufacturing Engineering & Market, 2009(4): 84-89 (in Chinese).
[8] 林胜. 自动铺带机/铺丝机(ATL/AFP)—现代大型飞机制造的关键设备(中)[J]. 世界制造技术与装备市场, 2009(5): 89-95. LIN S. ATL/AFP—The key machine for manufacturing of modern large airplane (B)[J]. World Manufacturing Engineering & Market, 2009(5): 89-95 (in Chinese).
[9] 林胜. 自动铺带机/铺丝机(ATL/AFP)—现代大型飞机制造的关键设备(下)[J]. 世界制造技术与装备市场, 2009(6): 78-83. LIN S. ATL/AFP—The key machine for manufacturing of modern large airplane (C)[J]. World Manufacturing Engineering & Market, 2009(6): 78-83 (in Chinese).
[10] 富宏亚, 韩振宇, 路华. 纤维缠绕/铺带/铺丝成型设备的发展状况[J]. 航空制造技术, 2009(22): 43-46. FU H Y, HAN Z Y, LU H. Development of the filament winding/tape layer/fiber placement machine[J]. Aeronautical Manufacturing Technology, 2009(22): 43-46 (in Chinese).
[11] 张振甫, 肖军, 吴海桥, 等. 复合材料锥壳0° 铺层的自动铺放成型方法研究[J]. 宇航材料工艺, 2007(2): 55-57. ZHANG Z F, XIAO J, WU H Q, et al. Study on laminating method for 0° plies in composite conical shell manufactured by automated tape laying[J]. Aerospace Materials & Technology, 2007(2): 55-57 (in Chinese).
[12] 还大军. 复合材料自动铺放CAD/CAM关键技术研究[D]. 南京: 南京航空航天大学, 2010. HUAN D J. Fundamental research on CAD/CAM technology of composite material automated placement[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese).
[13] 李善缘, 王小平, 朱丽君. 复合材料铺丝成型中的路径规划[J]. 宇航材料工艺, 2009(2): 25-29, 41. LI S Y, WANG X P, ZHU L J. Path planning for composite fiber placement[J]. Aerospace Materials & Technology, 2009(2): 25-29, 41 (in Chinese).
[14] 朱丽君. 复合材料自动铺丝技术中的路径计算[D]. 南京: 南京航空航天大学, 2010. ZHU L J. Trajectory computation on robotic fiber placement for composite structures[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese).
[15] 卢敏, 周来水, 王小平, 等. 圆筒状构件的多层铺丝路径生成算法[J]. 航空学报, 2011, 32(1): 181-186. LU M, ZHOU L S, WANG X P, et al. Trajectory generation for cylindrical structures in robotic multi-fiber placement[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 181-186 (in Chinese).
[16] 韩振宇, 李玥华, 富宏亚, 等. 锥壳零件自动铺丝变角度轨迹规划算法[J]. 计算机辅助设计与图形学学报, 2012, 24(3): 400-405. HAN Z Y, LI Y H, FU H Y, et al. Variable-angles trajectory planning algorithm of automated fiber placement for conical shell[J]. Journal of Computer-Aided Design & Computer Graphics, 2012, 24(3): 400-405 (in Chinese).
[17] 黄威, 王显峰, 肖军. 复合材料锥壳固定角轨迹的铺放工艺性分析[J]. 玻璃钢/复合材料, 2016(3): 27-30. HUANG W, WANG X F, XIAO J. Analyze of placement manufacturability of fixed-angle trajectory for composite conical shell[J]. Fiber Reinforced Plastics/Composites, 2016(3): 27-30 (in Chinese).
[18] ZHAO C, WANG B D, XIAO J. Macroscopic characterization of fiber micro-buckling and its influence on composites tensile performance[J]. Reinforced Plastic & Composite, 2017, 36(3): 196-205.
[19] 李俊斐. 基于结构设计的开孔曲面自调节铺丝轨迹规划算法研究[D]. 南京: 南京航空航天大学, 2013. LI J F. Research on automated fiber placement trajectory planning method of adjustment algorithm based on structural design for surface with holes[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese).
[20] 熊文磊, 肖军, 王显峰, 等. 基于网格化曲面的自适应自动铺放轨迹算法[J]. 航空学报, 2013, 34(2): 434-441. XIONG W L, XIAO J, WANG X F, et al. Algorithm of adaptive path planning for automated placement on meshed surface[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 434-441 (in Chinese).
[21] 陈维桓. 微分几何[M]. 北京: 北京大学出版社, 2006: 229-230. CHEN W H. Differential geometry[M]. Beijing: Peking University Press, 2006: 229-230 (in Chinese).
[22] 李顺林, 王兴业. 复合材料结构设计基础[M]. 武汉: 武汉理工大学出版社, 1993: 15-25. LI S L,WANG X Y. Foundation of composite structure design[M]. Wuhan: Wuhan University of Technology Press, 1993: 15-25 (in Chinese).

文章导航

/