固体力学与飞行器总体设计

基于一种新的均匀化实施方法的FRP刚度预测

  • 高涛 ,
  • 漆文凯 ,
  • 沈承
展开
  • 1. 南京航空航天大学 能源与动力学院, 南京 210016;
    2. 江苏省航空动力系统重点实验室, 南京 210016

收稿日期: 2016-06-30

  修回日期: 2017-01-23

  网络出版日期: 2017-02-16

基金资助

航空科学基金(2013ZB52019);国家自然科学基金(11502110);江苏省自然科学基金(BK20150737);中央高校基本科研业务费专项资金(NJ20150005)

Prediction of FRP stiffness based on a new implementation of homogenization method

  • GAO Tao ,
  • QI Wenkai ,
  • SHEN Cheng
Expand
  • 1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing 210016, China

Received date: 2016-06-30

  Revised date: 2017-01-23

  Online published: 2017-02-16

Supported by

Aeronautical Science Foundation of China (2013ZB52019);National Natural Science Foundation of China (11502110);Natural Science Foundation of Jiangsu Province of China (BK20150737);the Fundamental Research Funds for Central Universities (NJ20150005)

摘要

基于一种新的渐近均匀化(AH)实施方法,预测并讨论了单向纤维增强复合材料(FRP)的宏观等效弹性性能及纤维排列方式对等效力学性能的影响。该方法方便地将有限元分析(FEA)软件作为一个工具箱使用,只需在单胞上施加简单位移周期边界条件开展静力学分析,即可经过简单计算得到等效弹性常数,相比传统均匀化实施方法显著降低了实施难度并简化了计算过程。通过对比不同数值方法的结果验证了该方法的有效性和精确性。数值结果表明:六边形排列下单向纤维增强复合材料呈现横观各向同性,而正方形排列下则呈现宏观正交各向异性,经过刚度平均化过程可得到横观各向异性材料性质,纤维体积含量对两种排列方式下材料等效弹性模量影响显著但有所差别。

本文引用格式

高涛 , 漆文凯 , 沈承 . 基于一种新的均匀化实施方法的FRP刚度预测[J]. 航空学报, 2017 , 38(5) : 220579 -220579 . DOI: 10.7527/S1000-6893.2017.220579

Abstract

Based on a new implementation of asymptotic homogenization (AH) method, the macroscopic equivalent elastic properties of unidirectional fiber reinforced polymer (FRP) and the effect of fiber arrangement on the equivalent mechanical properties were predicted and discussed. This method can be easily implemented to obtain the effective elastic constants using commercial finite element analysis (FEA) software as a tool box, and nodal displacement field corresponding to the unit strain field was applied with consideration of periodic boundary conditions. Compared to traditional homogenization methods this method significantly reduced the difficulty of implementation and simplified the calculation process. A comparison of several methods reveals that this implementation method is simple and the result obtained is accurate. The numerical results show:fiber reinforced polymer with hexagonal arrangement has transversely isotropic material behavior but FRP with square arrangement has orthotropic material behavior; a stiffness averageness procedure is required to obtain the transversely isotropic stiffness matrix of FRP; the fiber volume fraction has a significant but different effect on the equivalent elastic modulus of the two kinds of arrangement.

参考文献

[1] 杜善义, 章继峰, 张博明. 先进复合材料格栅结构(AGS)应用与研究进展[J]. 航空学报, 2007, 28(2):419-424. DU S Y, ZHANG J F, ZHANG B M. Overview of application and research on advanced composite grid structures[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2):419-424 (in Chinese).
[2] DIXIT A, MALI H S. Modeling techniques for predicting the mechanical properties of woven-fabric textile composites:A review[J]. Mechanics of Composite Materials, 2013, 49(1):1-20.
[3] YOUNES R, HALLAL A, FARDOUN F, et al. Comparative review study on elastic properties modeling for unidirectional composite materials[M]//Composites and Their Properties. Rijeka:InTech, 2012:261-290.
[4] HILL R. A self-consistent mechanics of composite materials[J]. Journal of the Mechanics and Physics of Solids, 1965, 13(4):213-222.
[5] CHRISTENSEN R M, LO K H. Solutions for effective shear properties in three phase sphere and cylinder models[J]. Journal of the Mechanics and Physics of Solids, 1979, 27(4):315-330.
[6] MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica, 1973, 21(5):571-574.
[7] LIU X N, HU G K. A continuum micromechanical theory of overall plasticity for particulate composites including particle size effect[J]. International Journal of Plasticity, 2005, 21(4):777-799.
[8] HU N, WANG B, TAN G W, et al. Effective elastic properties of 2-D solids with circular holes:Numerical simulations[J]. Composites Science and Technology, 2000, 60(9):1811-1823.
[9] LIU T, DENG Z C, LU T J. Design optimization of truss-cored sandwiches with homogenization[J]. International Journal of Solids & Structures, 2006, 43(25-26):7891-7918.
[10] SUN C T, VAIDYA R S. Prediction of composite properties from a representative volume element[J]. Composites Science and Technology, 1996, 56(2):171-179.
[11] KANIT T, FOREST S, GALLIET I, et al. Determination of the size of the representative volume element for random composites:Statistical and numerical approach[J]. International Journal of Solids and Structures, 2003, 40(13-14):3647-3679.
[12] CHENG G D, CAI Y W, XU L. Novel implementation of homogenization method to predict effective properties of periodic materials[J]. Acta Mechanica Sinica, 2013, 29(4):550-556.
[13] BENSSOUSAN A, LIONS J L, PAPANICOLAOU G. Asymptotic analysis for periodic structures[M]. New York:North-Holland Publishing Co., 1978:102-121.
[14] HASSANIA B, HINTON E. A review of homogenization and topology optimization I-Homogenization theory for media with periodic structure[J]. Computers and Structures, 1998, 69(6):707-717.
[15] 邢誉峰, 陈磊. 若干周期性复合材料结构数学均匀化方法的计算精度[J]. 航空学报, 2015, 36(5):1520-1529. XING Y F, CHEN L. Accuracy analysis of mathematical homogenization method for several periodical composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1520-1529 (in Chinese).
[16] ANDRIANOV I V, DANISHEVS'KYY V V, WEICHERT D. Asymptotic determination of effective elastic properties of composite materials with fibrous square-shaped inclusions[J]. European Journal of Mechanics-A/Solids, 2002, 21(6):1019-1036.
[17] ASKARI D, VEEDU V P, GHASEMI-NEJHAD M N. Chirality dependence of carbon single-walled nanotube material properties:Axial coefficient of thermal expansion[J]. Journal of Nanoscience & Nanotechnology, 2006, 6(7):2167-2174.
[18] NASUTION M R E, WATANABE N, KONDO A, et al. Thermomechanical properties and stress analysis of 3-D textile composites by asymptotic expansion homogenization method[J]. Composites Part B:Engineering, 2014, 60:378-391.
[19] HASSAN E M, GEORGIADES A V, SAVI M A, et al. Analytical and numerical analysis of 3D grid-reinforced orthotropic composite structures[J]. International Journal of Engineering Science, 2011, 49(7):589-605.
[20] KALAMKAROV A L, GEORGIADES A V. Asymptotic homogenization models for smart composite plates with rapidly varying thickness:Part I-Theory[J]. International Journal for Multiscale Computational Engineering, 2004, 2(1):133-148.
[21] CHALLAGULLA K S, GEORGIADES A V, KALAMKAROV A L. Asymptotic homogenization modeling of smart composite generally orthotropic grid-reinforced shells:Part I-Theory[J]. European Journal of Mechanics-A/Solids, 2010, 29(4):530-540.
[22] GEORGIADES A V, CHALLAGULLA K S, KALAMKAROV A L. Asymptotic homogenization modeling of smart composite generally orthotropic grid-reinforced shells:Part Ⅱ-Applications[J]. European Journal of Mechanics-A/Solids, 2010, 29(4):541-556.
[23] KALAMKAROV A L, ANDRIANOV I V, DANISHEVS'KYY V V. Asymptotic homogenization of composite materials and structures[J]. Applied Mechanics Reviews, 2009, 62(3):669-676.
[24] CAI Y W, XU L, CHENG G D. Novel numerical implementation of asymptotic homogenization method for periodic plate structures[J]. International Journal of Solids and Structures, 2014, 51(1):284-292.
[25] WANG W X, LUO D M, TAKAO Y, et al. New solution method for homogenization analysis and its application to the prediction of macroscopic elastic constants of materials with periodic microstructures[J]. Computers and Structures, 2006, 84(15-16):991-1001.
[26] SIGMUND O, TORQUATO S. Design of smart composite materials using topology optimization[J]. Smart Materials and Structures, 1999, 8(3):365-379.
[27] ABOUDI J, PINDERA M J, ARNOLD S M. Linear thermoelastic higher-order theory for periodic multiphase materials[J]. Journal of Applied Mechanics, 2001, 68(5):697-707.
[28] WILLIAMS T O. A two-dimensional, higher-order, elasticity-based micromechanics model[J]. International Journal of Solids and Structures, 2005, 42(3-4):1009-1038.
[29] ABOUDI J. A continuum theory for fiber-reinforced elastic-viscoplastic composites[J]. International Journal of Engineering Science, 1982, 20(5):605-621.
[30] YU W B, TANG T. Variational asymptotic method for unit cell homogenization of periodically heterogeneous materials[J]. International Journal of Solids and Structures, 2007, 44(11-12):3738-3755.
[31] 许震宇, 张若京. 纤维排列方式对单向纤维加强复合材料弹性常数的影响[J]. 力学季刊, 2002, 23(1):59-63. XU Z Y, ZHANG R J. Influence of fibers' packing modes on elastic constants of fiber reinforced polymer (FRP) material[J]. Chinese Quarterly of Mechanics, 2002, 23(1):59-63 (in Chinese).

文章导航

/