金属梯度多孔夹芯板振动特性分析
收稿日期: 2016-06-30
修回日期: 2016-12-27
网络出版日期: 2017-02-13
基金资助
国家自然科学基金(11372237)
Vibration response of sandwich panels with gradient metallic cellular core
Received date: 2016-06-30
Revised date: 2016-12-27
Online published: 2017-02-13
Supported by
National Natural Science Foundation of China (11372237)
肖登宝 , 赵桂平 . 金属梯度多孔夹芯板振动特性分析[J]. 航空学报, 2017 , 38(6) : 220576 -220576 . DOI: 10.7527/S1000-6893.2016.220576
The gradient metallic cellular material has gradient pore structures from one surface of the material to the other one resulting in varying material properties,such as mass density and elastic modulus. The vibration response of sandwich panels may be influenced when the traditional homogeneous cellular core is replaced by gradient metallic cellular core. Based on the high-order plate theory and considering the coupling effect between the density and the elastic module of gradient metallic cellular materials, the vibration equation for the sandwich panel with composite face sheet and gradient metallic cellular core is developed. The influence of three gradient types of cores (unidirectional distribution, positive gradient symmetrical distribution and negative gradient symmetrical distribution) on the natural frequency of sandwich panels is discussed. The vibration responses of sandwich panels with three gradient metallic cellular cores under the same impulsive loading are discussed.
[1] SURESH S, MORTENSEN A. Fundamentals of functionally graded materials[M]. London: IOM Communications Limited, 1998: 1-40.
[2] DAI H T, CHENG W, LI M Z. Static/dynamic analysis of functionally graded and layered magneto-electro-elastic plate/pipe under Hamiltonian system[J]. Chinese Journal of Aeronautics, 2008, 21(1): 35-42.
[3] 贺尔铭,胡亚琪,张钊,等. FGM板三维层合模型及热-噪声载荷下的动态响应研究[J]. 航空学报, 2013, 34(6): 1293-1300. HE E M, HU Y Q, ZHANG Z, et al. 3-D laminated model and dynamic response analysis of FGM panels in thermal-acoustic environments[J]. Acta Aeronautica et Astronautica Sininca, 2013, 34(6): 1293-1300 (in Chinese).
[5] GIBSON L J, ASHBY M F. Cellular solids: Structure and properties[M]. 2nd ed. Cambridge: Cambridge University Press, 1997: 185-196.
[6] ASHBY M F. Metal foams: A design guide[M]. Oxford: Butterworth-Heinemann, 2000: 53-54.
[7] 谢兰生, 童国权, 高霖. Kelvin结构开孔泡沫材的弹性性能研究[J]. 应用力学学报, 2007, 24(1): 75-78. XIE L S, TONG G Q, GAO L.Elastic properties of the Kelvin type with open-cells[J]. Chinese Journal of Applied Mechanics, 2007, 24(1): 75-78 (in Chinese).
[8] THOMOSON W S. On the division of space with minimum partitional area[J]. Acta Mathematica, 1887, 11(1): 121-134.
[9] 卢子兴, 黄纪翔, 陈鑫. 各向异性Kelvin开孔泡沫模型的弹性性能[J]. 航空学报, 2009, 30(6): 1017-1022. LU Z X, HUANG J X, CHEN X. Elastic properties of anisotropic Kelvin model for open-cell foams[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1017-1022 (in Chinese).
[10] 王嵩, 卢子兴. 闭孔Voronoi泡沫的弹性性能分析 [J]. 航空学报, 2007, 28(3): 574-578. WANG S, LU Z X. Investigation into elastic properties of closed-cell Voronoi foam[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3): 574-578 (in Chinese).
[11] XIAO D B, MU L, ZHAO G P. The influence of correlating material parameters of gradient foam core on free vibration of sandwich panel[J]. Composites Part B: Engineering, 2015, 77: 153-161.
[12] RAHMANI O, KHALILI S M R, MALEKZADEH K, et al. Free vibration analysis of sandwich structures with a flexible functionally graded syntactic core[J]. Composite Structure, 2009, 91(2): 229-235.
[13] LIU M, CHENG Y S, LIU J. High-order free vibration analysis of sandwich plates with both functionally graded face sheets and functionally graded flexible core[J]. Composite Part B: Engineering, 2015, 72: 97-107.
[14] HOHE J, LIBRESCU L, OH S Y. Dynamic buckling of flat and curved sandwich panels with transversely compressible core[J]. Composite Structure, 2006, 74(1): 10-24.
[15] QIN Z, BATRA R C. Local slamming impact of sandwich composite hulls[J]. International Journal of Solids and Structures, 2009, 46(10): 2011-2035.
/
〈 | 〉 |