固体力学与飞行器总体设计

金属梯度多孔夹芯板振动特性分析

  • 肖登宝 ,
  • 赵桂平
展开
  • 西安交通大学 航天航空学院 机械结构强度与振动国家重点实验室, 西安 710049

收稿日期: 2016-06-30

  修回日期: 2016-12-27

  网络出版日期: 2017-02-13

基金资助

国家自然科学基金(11372237)

Vibration response of sandwich panels with gradient metallic cellular core

  • XIAO Dengbao ,
  • ZHAO Guiping
Expand
  • State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2016-06-30

  Revised date: 2016-12-27

  Online published: 2017-02-13

Supported by

National Natural Science Foundation of China (11372237)

摘要

金属梯度多孔材料芯层的胞孔壁厚度及半径沿芯层厚度方向逐渐变化,使得芯层的材料参数如密度和弹性模量等逐渐变化;采用金属梯度多孔材料代替传统均质多孔芯层会影响夹芯板的振动特性。基于高阶夹芯板理论且考虑梯度多孔芯层密度和弹性模量的耦合影响,建立了复合材料面层-金属梯度多孔夹芯板的振动方程。分析了3种密度的梯度芯层:单向分布、正梯度对称分布和负梯度对称分布对夹芯板固有频率的影响;最后讨论了3种梯度夹芯板在相同三角脉冲载荷作用下的振动响应。计算结果表明梯度芯层密度对称分布的夹芯板固有频率大于单向分布的夹芯板固有频率。

本文引用格式

肖登宝 , 赵桂平 . 金属梯度多孔夹芯板振动特性分析[J]. 航空学报, 2017 , 38(6) : 220576 -220576 . DOI: 10.7527/S1000-6893.2016.220576

Abstract

The gradient metallic cellular material has gradient pore structures from one surface of the material to the other one resulting in varying material properties,such as mass density and elastic modulus. The vibration response of sandwich panels may be influenced when the traditional homogeneous cellular core is replaced by gradient metallic cellular core. Based on the high-order plate theory and considering the coupling effect between the density and the elastic module of gradient metallic cellular materials, the vibration equation for the sandwich panel with composite face sheet and gradient metallic cellular core is developed. The influence of three gradient types of cores (unidirectional distribution, positive gradient symmetrical distribution and negative gradient symmetrical distribution) on the natural frequency of sandwich panels is discussed. The vibration responses of sandwich panels with three gradient metallic cellular cores under the same impulsive loading are discussed.

参考文献

[1] SURESH S, MORTENSEN A. Fundamentals of functionally graded materials[M]. London: IOM Communications Limited, 1998: 1-40.
[2] DAI H T, CHENG W, LI M Z. Static/dynamic analysis of functionally graded and layered magneto-electro-elastic plate/pipe under Hamiltonian system[J]. Chinese Journal of Aeronautics, 2008, 21(1): 35-42.
[3] 贺尔铭,胡亚琪,张钊,等. FGM板三维层合模型及热-噪声载荷下的动态响应研究[J]. 航空学报, 2013, 34(6): 1293-1300. HE E M, HU Y Q, ZHANG Z, et al. 3-D laminated model and dynamic response analysis of FGM panels in thermal-acoustic environments[J]. Acta Aeronautica et Astronautica Sininca, 2013, 34(6): 1293-1300 (in Chinese).
[5] GIBSON L J, ASHBY M F. Cellular solids: Structure and properties[M]. 2nd ed. Cambridge: Cambridge University Press, 1997: 185-196.
[6] ASHBY M F. Metal foams: A design guide[M]. Oxford: Butterworth-Heinemann, 2000: 53-54.
[7] 谢兰生, 童国权, 高霖. Kelvin结构开孔泡沫材的弹性性能研究[J]. 应用力学学报, 2007, 24(1): 75-78. XIE L S, TONG G Q, GAO L.Elastic properties of the Kelvin type with open-cells[J]. Chinese Journal of Applied Mechanics, 2007, 24(1): 75-78 (in Chinese).
[8] THOMOSON W S. On the division of space with minimum partitional area[J]. Acta Mathematica, 1887, 11(1): 121-134.
[9] 卢子兴, 黄纪翔, 陈鑫. 各向异性Kelvin开孔泡沫模型的弹性性能[J]. 航空学报, 2009, 30(6): 1017-1022. LU Z X, HUANG J X, CHEN X. Elastic properties of anisotropic Kelvin model for open-cell foams[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1017-1022 (in Chinese).
[10] 王嵩, 卢子兴. 闭孔Voronoi泡沫的弹性性能分析 [J]. 航空学报, 2007, 28(3): 574-578. WANG S, LU Z X. Investigation into elastic properties of closed-cell Voronoi foam[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(3): 574-578 (in Chinese).
[11] XIAO D B, MU L, ZHAO G P. The influence of correlating material parameters of gradient foam core on free vibration of sandwich panel[J]. Composites Part B: Engineering, 2015, 77: 153-161.
[12] RAHMANI O, KHALILI S M R, MALEKZADEH K, et al. Free vibration analysis of sandwich structures with a flexible functionally graded syntactic core[J]. Composite Structure, 2009, 91(2): 229-235.
[13] LIU M, CHENG Y S, LIU J. High-order free vibration analysis of sandwich plates with both functionally graded face sheets and functionally graded flexible core[J]. Composite Part B: Engineering, 2015, 72: 97-107.
[14] HOHE J, LIBRESCU L, OH S Y. Dynamic buckling of flat and curved sandwich panels with transversely compressible core[J]. Composite Structure, 2006, 74(1): 10-24.
[15] QIN Z, BATRA R C. Local slamming impact of sandwich composite hulls[J]. International Journal of Solids and Structures, 2009, 46(10): 2011-2035.

文章导航

/