基于非线性渐进损伤模型的复合材料波纹梁耐撞性能研究
收稿日期: 2016-08-29
修回日期: 2016-11-11
网络出版日期: 2017-01-09
基金资助
国家自然科学基金(11402011);中央高校基本科研业务费专项资金(201401390741)
Crashworthiness of composite corrugated beam based on nonlinear progressive damage model
Received date: 2016-08-29
Revised date: 2016-11-11
Online published: 2017-01-09
Supported by
National Natural Science Foundation of China (11402011);the Fundamental Research Funds for the Central Universities (201401390741)
基于连续介质损伤力学,提出了一种包括层内和层间失效的非线性渐进损伤模型来预测复合材料波纹梁在轴向冲击下的失效行为。其中,层内损伤采用最大应力准则,并结合指数型损伤演化法则和刚度折减方法预测失效后的材料参数。层间损伤模型则采用了二次名义应力准则、基于混合模式能量的指数型损伤演化法则和黏性刚度折减方法建立。基于该模型,对典型的波纹梁结构参数和触发等对耐撞性的影响进行了研究。结果表明数值模拟结果与试验结果基本吻合,模型能够准确地模拟复合材料波纹梁在冲击过程中出现的分层、纤维和基体破坏等失效模式。波纹梁在破坏过程中吸收的能量、比吸能和载荷峰值随层数不断递增,降低高度和减小触发结构的截面面积均会降低载荷峰值。
蒋宏勇 , 任毅如 , 袁秀良 , 高宾华 . 基于非线性渐进损伤模型的复合材料波纹梁耐撞性能研究[J]. 航空学报, 2017 , 38(6) : 220717 -220717 . DOI: 10.7527/S1000-6893.2016.220717
Based on continuum damage mechanics, a nonlinear progressive damage model including intra-and inter-laminar failures was presented to predict the failure behavior of composite corrugated beam under the axial crushing. The maximum stress criterion combined with exponential damage evolution laws and stiffness discount method were adopted to predict the material parameters of intra-laminar damage. The inter-laminar damage model was modeled by a quadratic nominal stress criterion, an exponential damage evolution law based on the mixed-mode energy and cohesive stiffness discount method. Based on this model, the effect of triggers and the typical parameters of corrugated beam structures on crashworthiness were investigated. The results of numerical simulation show basic agreement with the experimental data. The failure modes of delamination, fiber and matrix damage that appeared in the impact process of composite corrugated beam can be simulated accurately. During the damage of corrugated beam, absorbed energy, specific energy absorption as well as the peak load are the increasing function with respect to the layers. In addition, the peak load decreases with the decreasing of height and trigger-sectional area.
[1] HAMADA H, RAMAKRISHNA S, SATO H. Effect of fiber orientation on the energy absorption capability of carbon fiber/PEEK composite tubes[J]. Journal of Composite Materials, 1996, 30(8): 947-963.
[2] 陈永刚, 益小苏, 许亚洪, 等. Carbon-Epoxy圆管件的静态吸能特征[J]. 航空学报, 2005, 26(2): 246-249. CHEN Y G, YI X S, XU Y H, et al. Static energy absorption characteristics of carbon-epoxy tubes[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(2): 246-249 (in Chinese).
[3] HANAGUD S, CRAIG J I, SRIRAM P, et al. Energy absorption behavior of graphite epoxy composite sine webs[J]. Journal of Composite Materials, 1989, 23(5): 448-459.
[4] FARLEY G L. Effects of crushing speed on the energy-absorption capability of composite tubes[J]. Journal of Composite Materials, 1991, 25(10): 1314-1329.
[5] 任毅如, 向锦武, 罗漳平, 等. 飞行器机身结构耐撞性分析与设计[J]. 工程力学, 2013, 30(10): 296-304. REN Y R, XIANG J W, LUO Z P, et al. Crashworthiness analysis and design of aircraft fuselage structure[J]. Engineering Mechanics, 2013, 30(10): 296-304 (in Chinese).
[6] 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报, 2013, 34(9): 2130-2140. LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2130-2140 (in Chinese).
[7] 任毅如, 向锦武, 罗漳平, 等. 客舱地板斜撑杆对民机典型机身段耐撞性能的影响[J]. 航空学报, 2010, 31(2): 271-276. REN Y R, XIANG J W, LUO Z P, et al. Effect of cabin-floor oblique strut on crashworthiness of typical civil aircraft fuselage section[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 271-276 (in Chinese).
[8] MAMALIS A G, MANOLAKOS D E, IOANNIDIS M B, et al. The static and dynamic axial collapse of CFRP square tubes: Finite element modelling[J]. Composite Structures, 2006, 74(2): 213-225.
[9] ZHANG P, GUI L J, FAN Z J, et al. Finite element modeling of the quasi-static axial crushing of braided composite tubes[J]. Computational Materials Science, 2013, 73(6): 146-153.
[10] 万志敏, 桂良进, 谢志民, 等. 玻璃-环氧圆柱壳吸能特性的试验研究[J]. 复合材料学报, 1999,16(2): 15-20. WAN Z M, GUI L J, XIE Z M, et al. Experimental study on energy-absorption properties of glass-epoxy cylindrical shells[J]. Acta Materiae Compositae Sinica, 1999, 16(2): 15-20 (in Chinese).
[11] MAHDI E, MOKHTAR A S, ASARI N A, et al. Nonlinear finite element analysis of axially crushed cotton fibre composite corrugated tubes[J]. Composite Structures, 2006, 75(1): 39-48.
[12] ATAOLLAHI S, TAHER S T, ESHKOOR R A, et al. Energy absorption and failure response of silk/epoxy composite square tubes: Experimental[J]. Composites Part B: Engineering, 2012, 43(2): 542-548.
[13] SHI Q H, DAI D, CAO Z H. Tensile failure strength analysis and experimental confirmation of stitch reinforced composite of T-stiffened structure[J]. Polymers & Polymer Composites, 2012, 20(3): 307-312.
[14] FERABOLI P. Development of a corrugated test specimen for composite materials energy absorption[J]. Journal of Composite Materials, 2008, 42(3): 229-256.
[15] 龚俊杰, 王鑫伟. 复合材料波纹梁吸能能力的数值模拟[J]. 航空学报, 2005, 26(3): 298-302. GONG J J, WANG X W. Numerical simulation of energy absorption capability of composite waved beams [J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3): 298-302 (in Chinese).
[16] 孟祥吉, 燕瑛, 罗海波, 等. 复合材料波纹梁冲击试验与数值模拟[J]. 复合材料学报, 2015, 32(1): 196-203. MENG X J, YAN Y, LUO H B, et al. Impact tests and numerical simulation of composite waved-beam[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 196-203 (in Chinese).
[17] DUAN S Y, TAO Y R, HAN X, et al. Investigation on structure optimization of crashworthiness of fiber reinforced polymers materials[J]. Composites Part B: Engineering, 2014, 60(2): 471-478.
[18] SOKOLINSKY V S. Numerical simulation of the crushing process of a corrugated composite plate[J]. Composites Part A: Applied Science & Manufacturing, 2011, 42(9): 1119-1126.
[19] MAIMÍ P, CAMANHO P P, MAYUGO J A, et al. A thermodynamically consistent damage model for advanced composites: NASA/TM-2006-214282[R]. Washington, D.C.: NASA, 2006.
[20] ABAQUS 6.13 analysis user's manual[M]. Pairs: Dassault Systemes, 2013.
[21] BEUTH J L. Separation of crack extension modes in orthotropic delamination models[J]. International Journal of Fracture, 1996, 77(4): 305-321.
[22] KENANE M, BENZEGGAGH M L. Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading[J]. Composites Science & Technology, 1997, 57(5): 597-605.
[23] MATZENMILLER A, LUBLINER J, TAYLOR R L. A constitutive model for anisotropic damage in fiber-composites[J]. Mechanics of Materials, 1995, 20(2): 125-152.
[24] SLEIGHT D W. Progressive failure analysis methodology for laminated composite structures: NASA/TP-1999-209107[R]. Washington, D.C.: NASA, 1999: 1-25.
[25] PINHO S T, ROBINSON P, IANNUCCI L. Fracture toughness of the tensile and compressive fibre failure modes in laminated composites[J]. Composites Science & Technology, 2006, 66(13): 2069-2079.
[26] 龚俊杰, 王鑫伟. 薄弱环节对复合材料波纹梁吸能能力的影响[J]. 材料工程, 2006(5): 28-31. GONG J J, WANG X W. Effect of trigger geometry on energy absorption of composite waved-beams[J]. Journal of Materials Engineering, 2006(5): 28-31 (in Chinese).
/
〈 | 〉 |