过冷液体的冻结过程中的温度分布与相界面的位置可以通过求解Stefan问题来预测。经典Stefan问题中认为相界面的温度为凝固点,但在快速冻结发生时由于非平衡条件的影响,相界面的温度会低于凝固点,此时如何确定相界面的温度是一个难点。通过分子动力学模拟方法研究了过冷水快速冻结过程,得到了相界面在不同移动速度下相界面温度的变化规律。相界面过冷度为0~5K范围内,界面动力学系数可以近似为0.55m·s-1·K-1,即相界面移动速度每增加0.55m/s,相界面的温度降低1K。对于更高的相界面过冷度,相界面移动速度和相界面过冷度的关系可用一个二次函数来描述。该相界面温度确定方法可应用于过冷水快速冻结的数值模拟。
The interface position in the freezing of supercooled water could be predicted by solving the Stefan problem. In classical Stefan problem, the interface temperature is set as a constant equal to the melting temperature of the liquid phase. In problems involving rapid solidification, the interface temperature could be lower than the melting temperature due to the non-equilibrium condition. De-termining the interface temperature becomes a challenge. Molecular dynamics method is applied to simulate rapid freezing of super-cooled water. A method to determine the interface temperature is developed. If the interface supercooling temperature is in the range of 0 K to 5 K, the interface kinetic coefficient could be 0.55m·s-1·K-1, Which indicates that interface temperature would decrease 1K if the interface velocity increases 0.55 m/s. For larger supercooling temperature, relationship of the interface velocity and the interface temperature is a quadratic function. The relationship could be applied to the numerical simulation of rapid freezing of supercooled water.
[1] LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics [J]. Progress In Aerospace Sciences, 2001, 37(8): 669-767.
[2] STEFAN J. über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere [J]. Annalen der Physik, 1891, 278(2): 269-86.
[3] KUTLUAY S, BAHADIR A R, ?ZDE? A. The numerical solution of one-phase classical Stefan problem [J]. Journal of Computational and Applied Mathematics, 1997, 81(1): 135-44.
[4] KURZ W, FISHER D. Fundamentals of solidification [M]. 1992.
[5] JURIC D, TRYGGVASON G. A front-tracking method for dendritic solidification [J]. Journal of Computational Physics, 1996, 123(1): 127-48.
[6] CHEN S, MERRIMAN B, OSHER S, et al. A simple level set method for solving Stefan problems [J]. Journal of Computational Physics, 1997, 135(1): 8-29.
[7] KIM Y-T, GOLDENFELD N, DANTZIG J. Computation of dendritic microstructures using a level set method [J]. Physical Review E, 2000, 62(2): 2471-4.
[8] RAUSCHENBERGER P, WEIGAND B. A Volume-of-Fluid method with interface reconstruction for ice growth in supercooled water [J]. Journal of Computational Physics, 2015, 282(0):98-112.
[9] SUN D, ASTA M, HOYT J. Kinetic coefficient of Ni solid-liquid interfaces from molecular-dynamics simulations [J]. Physical Review B, 2004, 69(2): 024108.
[10] NADA H, FURUKAWA Y. Anisotropic growth kinetics of ice crystals from water studied by molecular dynamics simulation [J]. Journal of Crystal Growth, 1996, 169(3): 587-97.
[11] MATSUMOTO M, SAITO S, OHMINE I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing [J]. Nature, 2002, 416(6879): 409-13.
[12] NADA H, VAN DER EERDEN J P, FURUKAWA Y. A clear observation of crystal growth of ice from water in a molecular dynamics simulation with a six-site potential model of H2O [J]. Journal of Crystal Growth, 2004, 266(1–3): 297-302.
[13] CARIGNANO M A, SHEPSON P B, SZLEIFER * I. Molecular dynamics simulations of ice growth from supercooled water [J]. Molecular Physics, 2005, 103(21-23): 2957-67.
[14] RUBINSHTE?N L. The stefan problem [M]. American Mathematical Soc., 1971.
[15] ALEXIADES V. Mathematical modeling of melting and freezing processes [M]. CRC Press, 1992.
[16] WILLNECKER R, HERLACH D M, FEUERBACHER B. Evidence of nonequilibrium processes in rapid solidification of undercooled metals [J]. Physical Review Letters, 1989, 62(23): 2707-10.
[17] MOLINERO V, MOORE E B. Water Modeled As an Intermediate Element between Carbon and Silicon [J]. The Journal of Physical Chemistry B, 2009, 113(13): 4008-16.
[18] MOORE E B, MOLINERO V. Growing correlation length in supercooled water [J]. The Journal of chemical physics, 2009, 130(24): 244505.
[19] MOORE E B, DE LA LLAVE E, WELKE K, et al. Freezing, melting and structure of ice in a hydrophilic nanopore [J]. Physical Chemistry Chemical Physics, 2010, 12(16): 4124-34.
[20] LI T, DONADIO D, GALLI G. Ice nucleation at the nanoscale probes no man’s land of water [J]. Nature communications, 2013, 4(0):1887.
[21] AURENHAMMER F. Voronoi diagrams—a survey of a fundamental geometric data structure [J]. ACM Comput Surv, 1991, 23(3): 345-405.