电子电气工程与控制

面向航天器系统级测试的虚拟测试方法及应用

  • 乌尼日其其格 ,
  • 李小平 ,
  • 杨帆 ,
  • 马世龙 ,
  • 王华茂
展开
  • 1. 北京航空航天大学 软件开发环境国家重点实验室, 北京 100083;
    2. 航天器自动化测试技术联合实验室, 北京 100083;
    3. 中国空间技术研究院 总体部测试中心, 北京 100094

收稿日期: 2016-09-08

  修回日期: 2016-10-24

  网络出版日期: 2016-12-26

基金资助

国家自然科学基金(61003016,61300007,61305054);科技部基本科研业务费重点科技创新类项目(YWF-14-JSJXY-007);软件开发环境国家重点实验室自主探索基金(SKLSDE-2012ZX-28,SKLSDE-2014ZX-06)

A virtual test method for satellite system level verification and case study

  • WUNIRI Qiqige ,
  • LI Xiaoping ,
  • YANG Fan ,
  • MA Shilong ,
  • WANG Huamao
Expand
  • 1. State Key Laboratory of Software Development Environment, Beihang University, Beijing 100083, China;
    2. Joint Laboratory of Spacecraft Automated Test Technology, Beijing 100083, China;
    3. Institute of Spacecraft System Engineering, China Academy of Space Technology, Beijing 100094, China

Received date: 2016-09-08

  Revised date: 2016-10-24

  Online published: 2016-12-26

Supported by

National Natural Science Foundation of China (61003016,61300007,61305054);Base Research Foundation of Ministry of Science and Technology of China (YWF-14-JSJXY-007);Independent Discovery Foundation of State Key Laboratory of Software Development Environment of China (SKLSDE-2012ZX-28,SKLSDE-2014ZX-06)

摘要

航天器总体设计正确性和接口实现正确性的及时验证,是提高航天器这类复杂系统可靠性的重要手段。本文提出一种基于模型检测的虚拟测试方法。方法采用窗口树模型(WTM)对复杂系统进行建模,采用状态转移图(STG)作为系统规约刻画系统行为的正确性。方法通过提出基于自动机的模型检测机制,实现了一种面向航天器系统级测试的虚拟测试平台(VTP)原型系统。该平台支持虚拟测试准备、虚拟测试执行和虚拟测试评估等功能,模拟并实现复杂系统总体设计正确性的验证和接口实现正确性的验证。

本文引用格式

乌尼日其其格 , 李小平 , 杨帆 , 马世龙 , 王华茂 . 面向航天器系统级测试的虚拟测试方法及应用[J]. 航空学报, 2017 , 38(7) : 320768 -320768 . DOI: 10.7527/S1000-6893.2016.320768

Abstract

As a complex system, the verification of design and interface implementation of spacecraft is an effective way to increase its reliability. In this paper a virtual test method, which is a fusion approach on the combination of automata-based model checking theory and systems engineering theory, is proposed. An automaton of window tree model (WTM) based on multi-tree to describe the system behavior as a system-model is used on one hand, and a state transition graph (STG) based on automaton to describe design correctness as a specification is used on the other hand. An automaton-based model checking mechanism is proposed to build the foundation of the virtual test method. Moreover, the two main aspects of the method, including the design correctness verification and the interface implementation verification, are defined. Finally, a case study is followed to illustrate the technical approaches of virtual test method, the modelling process of a complex system as well as the verification process in a virtual test platform (VTP), which implements the method. The VTP is composed of three main features of the virtual test configuration, the virtual test execution as well as the virtual test evaluation.

参考文献

[1] THOMPSON K. Three phases of testability[C]//Aircraft Design, Systems and Operations Conference. Reston: AIAA, 1988: 4454.
[2] WANG G G. Definition and review of virtual prototyping[J]. Journal of Computing & Information Science in Engineering, 2002, 2(3): 232-236.
[3] MAGNUSSON P S. The virtual test lab[J]. Computer, 2005, 38(5): 95-97.
[4] BEZIN Y, FUNFSCHILLING C, KRAFT S, et al. Virtual testing environment tools for railway vehicle certification[J]. Proceedings of the Institution of Mechanical Engineers. Part F: Journal of Rail & Rapid Transit, 2015, 229(6): 221-249.
[5] EVANS P L, CASTELLAZZI A, JOHNSON C M. A multi-disciplinary virtual prototyping design tool for power electronics[C]//8th International Conference on Integrated Power Systems (CIPS). Berlin: VDE, 2014: 1-7.
[6] HUANG T, KONG C W, GUO H L, et al. A virtual prototyping system for simulating construction processes[J]. Automation in Construction, 2007, 16(5): 576-585.
[7] AUWERAER H V D, DONDERS S, MAS P, et al. Breakthrough technologies for virtual prototyping of automotive and aerospace structures[M]. Belgium: Springer Netherlands, 2008: 397-418.
[8] DONATI A, MARTINEZHERAS J A, NUNES P, et al. Virtual reality for monitoring spacecraft thermal subsystem. concept & prototype[C]//Space OPS 2004 Conference, 2004: 120.
[9] 陈宗基, 黄浩东, 秦旭东. 飞行控制系统虚拟原型技术[J]. 航空学报, 2002, 23(5): 441-447. CHEN Z J, HUANG H D, QIN X D. Virtual prototyping for flight control systems[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5): 441-447 (in Chinese).
[10] 依然. MSC软件助力航天七〇二所进行虚拟测试[J]. 航空制造技术, 2013(1): 22. YI R. MSC software supports on the virtual test in 702 Institute[J]. Aeronautical Manufacturing Technology, 2013(1): 22 (in Chinese).
[11] HEITMEYER C, ARCHER M, LEONARD E, et al. Applyingformal methods to a certifiably secure software system[J]. IEEE Transactions on Software Engineering, 2008, 34(1): 82-98.
[12] BAIER C, KATOEN J P. Principles ofmodel checking[M]. Massachusetts: The MIT Press, 2008: 271-287.
[13] CLARKE E M, WING J M. Formalmethods: State of the art and future directions[J]. ACM Computing Surveys, 1996, 28(4): 626-643.
[14] GLUCK P R, HOLZMANN G J. Using SPIN model checking for flight software verification[C]//Aerospace Conference Proceedings, 2002(1): 105-113.
[15] CARCENAC F, BONIOL F. Verification of an avionic system using timed model checking[C]//International Symposium on Leveraging Applications of Formal Methods (ISoLA), 2004: 335-342.
[16] MOTA A, SAMPAIO A. Model-checking CSP-Z: Strategy, tool support and industrial application[J]. Science of Computer Programming, 2001, 40(1): 59-96.
[17] MANNA Z, BJØRNER N S, BROWNE A, et al. An update on STeP: Deductive-algorithmic verification of reactive systems[M]. Tool support for system specification, development and verification. Vienna: Springer, 1999: 174-188.
[18] VARDI M Y, WOLPER P. An automata-theoretic approach to automatic program verification (preliminary report)[C]//Symposium on Logic in Computer Science, 1986: 322-331.
[19] 蒋屹新, 林闯, 曲扬, 等. 基于Petri网的模型检测研究[J]. 软件学报, 2004, 15(9): 1265-1276. JIANG Y X, LIN C, QU Y, et al. Research on model-checking based on Petri nets[J]. Journal of Software, 2004, 15(9): 1265-1276 (in Chinese).
[20] 李睿, 连航, 马世龙, 等. 基于形式化方法的航空电子系统检测[J]. 软件学报, 2015, 26(2): 181-201. LI R, LIAN H, MA S L, et al. Avionics system testing based on formal methods[J]. Journal of Software, 2015, 26(2): 181-201 (in Chinese).
[21] GROSS J, REICHWEIN A, BOCK D, et al. Anexecutable unified product model based on UML to support satellite design[C]//AIAA SPACE 2009 Conference & Exposition. Reston: AIAA, 2013.
[22] 连航. 面向安全苛刻系统可信性验证的检测方法关键技术研究[D]. 北京: 北京航空航天大学, 2013: 25-45. LIAN H. Research onkey technology of test method for credibility validation of safety-critical system[D]. Beijing: Beihang University, 2013: 25-45 (in Chinese).
[23] DUARTE E P, ZIWICH R P, ALBINI L C P. A survey of comparison-based system-level diagnosis[J]. ACM Computing Surveys, 2011, 43(3): 194-218.
[24] 尹宝林. 离散数学[M]. 北京: 高等教育出版社, 1998: 159-206. YIN B L. Discrete mathematics[M]. Beijing: Higher Education Press, 1998: 159-206 (in Chinese).
[25] BIAFORE B. Visio 2007bible[M]. Hoboken: John Wiley & Sons, 2007: 53-59.

文章导航

/