简化起落架噪声相似准则及马赫数比例律
收稿日期: 2016-09-08
修回日期: 2016-11-04
网络出版日期: 2016-12-21
基金资助
国家自然科学基金(11272034);中欧航空科学与技术合作项目DRAGY
Similarity rule and Mach number scaling law for simplified landing gear noise
Received date: 2016-09-08
Revised date: 2016-11-04
Online published: 2016-12-21
Supported by
National Natural Science Foundation of China (11272034);China-EU Aeronautical Science&Technology Cooperation Project DRAGY
真实飞机部件的气动噪声问题可以通过缩比模型气动声学试验研究,但是必须要遵循合适的相似准则。频率相似准则一般选择Helmholtz数或Strouhal数相似,而声源强度的相似准则在一定的雷诺数范围内通常采用Mach数相似。噪声随来流马赫数的比例律可用于外推风洞试验测量数据到真实飞行条件下,并判断声源类型。在北京航空航天大学D5气动声学风洞中对1/2缩比的LAnding Gear nOise database for civil aviation authority validatiON (LAGOON)简化起落架模型进行了气动声学试验研究。试验结果表明:该起落架模型的噪声频率遵循Helmholtz数相似准则而非Strouhal数相似准则。起落架噪声的马赫数比例律与频率有关,在低频范围内满足6次方关系,而在中高频范围内满足7次方关系。将D5风洞测得的噪声频谱按Helmholtz数相似及相应的马赫数比例律转换后与LAGOON原型试验结果对比,发现两者的测量结果吻合得非常好。
邢宇 , 刘沛清 , 郭昊 , 徐亮 , 李玲 . 简化起落架噪声相似准则及马赫数比例律[J]. 航空学报, 2017 , 38(6) : 120769 -120769 . DOI: 10.7527/S1000-6893.2016.0290
Noise generated from real aircraft component can be researched through aeroacoustic experiment of scaled model, but some suitable similarity rules must be followed. The frequency similarity rule usually follows Helmholtz number scaling or Strouhal number scaling, and the source strength similarity rule is normally chosen as Mach number similarity in a certain range of Reynolds number. The scaling law of noise magnitude according to the freestream Mach number is useful for applying wind tunnel noise data to real flight condition and estimating the type of noise source. An aeroacoustic experiment of a 1/2 scaled simplified landing gear model of landing gear noise database for civil aviation authority validation (LAGOON) project is carried out in D5 aeroacoustic wind tunnel at Beihang University. Experimental results indicate that the frequency similarity rule of this landing gear model satisfies the Helmholtz number similarity but not the Strouhal number similarity law. The scaling law of landing gear noise according to the freestream Mach number is highly dependent on the frequency. At low frequency range, the noise spectrum satisfies the sixth power scaling law, while at high frequency range the noise spectrum satisfies the seventh power scaling law. A comparison of the transformed noise spectrum of D5 wind tunnel to that of the LAGOON project with the Helmholtz number similarity rule and the corresponding Mach number scaling law shows that the two results agree well with each other.
Key words: landing gear; aeroacoustic wind tunnel; scaled model; similarity rule; scaling law
[1] DOBRZYNSKI W. Almost 40 years of airframe noise research: what did we achieve?[J]. Journal of Aircraft, 2010, 47(2): 353-367.
[2] LI Y, WANG X N, ZHANG D J. Control strategies for aircraft airframe noise reduction[J]. Chinese Journal of Aeronautics, 2013, 26(2): 249-260.
[3] 朱自强, 兰世隆. 民机机体噪声及其降噪研究[J]. 航空学报, 2015, 36(2): 406-421. ZHU Z Q, LAN S L. Study of airframe noise and its reduction for commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 406-421 (in Chinese).
[4] HELLER H H, DOBRZYNSKI W M. Unsteady surface pressure characteristics on aircraft components and far-field radiated airframe noise[J]. Journal of Aircraft, 1978, 115: 809-815.
[5] GUO Y P, YAMAMOTO K J, STOKER R W. Experimental study on aircraft landing gear noise[J]. Journal of Aircraft, 2006, 43(2): 306-317.
[6] LI Y, SMITH M, ZHANG X. Identification and attenuation of a tonal-noise source on an aircraft's landing gear[J]. Journal of Aircraft, 2010, 47(3): 796-804.
[7] LI Y, SMITH M, ZHANG X. Measurement and control of aircraft landing gear broadband noise[J]. Aerospace Science and Technology, 2012, 23: 213-223.
[8] YOKOKAWA Y, IMAMURA T, URA H, et al. Experimental study on noise generation of a two-wheel main landing gear: AIAA-2010-3973[R]. Reston: AIAA 2010.
[9] MURAYAMA M, YOKOKAWA Y, YAMAMOTO K, et al. Computational study of low-noise fairings around tire-axle region of a two-wheel main landing gear[J]. Computers & Fluids, 2013, 85: 114-124.
[10] RAVETTA P, BURDISSO R, NG W. Wind tunnel aeroacoustic measurements of a 26%-scale 777 main landing gear: AIAA-2004-2885[R]. Reston: AIAA,2004.
[11] REMILLIEUX M C, CAMARGO H E, RAVETTA P A, et al. Novel kevlar-walled wind tunnel for aeroacoustic testing of a landing gear[J]. AIAA Journal, 2008, 46(7):1631-1639.
[12] DOBRZYNSKI W, CHOW L, GUION P, et al. Research into landing gear airframe noise reduction: AIAA-2002-2409[R]. Reston: AIAA,2002.
[13] JAEGER S, BURNSIDE N, SODERMAN P, et al. Microphone array assessment of an isolated, 26%-scale, high-fidelity landing gear. AIAA-2002-2410[R]. Reston: AIAA, 2002.
[14] 乔渭阳, 许开富, 武兆伟, 等. 大型客机起飞着陆过程噪声辐射特性对比分析[J]. 航空学报, 2008, 29(3): 534-541. QIAO W Y, XU K F, WU Z W, et al. Noise radiation of large-scale commercial aircraft in take-off and landing[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 534-541 (in Chinese).
[15] 龙双丽, 聂宏, 薛彩军, 等. 飞机起落架气动噪声特性仿真与试验[J]. 航空学报, 2012, 33(6): 1002-1013. LONG S L, NIE H, XUE C J, et al. Simulation and experiment on aeroacoustic noise characteristics of aircraft landing gear[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1002-1013 (in Chinese).
[16] 龙双丽, 聂宏, 薛彩军, 等. 民用飞机起落架气动噪声数值仿真[J]. 南京航空航天大学学报, 2012, 44(6): 786-791. LONG S L, NIE H, XUE C J, et al. Aerodynamic noise simulation of commercial aircraft landing gear[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(6): 786-791 (in Chinese).
[17] 龙双丽, 聂宏, 薛彩军, 等. 某型飞机主起落架结构件气动噪声特性研究[J]. 振动与冲击, 2013, 32(1): 134-139. LONG S L, NIE H, XUE C J, et al. Noise characteristics of an aircraft's main landing gear structure[J]. Journal of Vibration and Shock, 2013, 32(1): 134-139 (in Chinese).
[18] REGER R W, CATTAFESTA L N. Experimental study of the rudimentary landing gear acoustics[J]. AIAA Journal, 2015, 53(6): 1715-1720.
[19] LIU P Q, XING Y, GUO H, et al. Design and performance of a small-scale aeroacoustic wind tunnel[J]. Applied Acoustics, 2017, 116: 65-69.
[20] CASALINO D, RIBEIRO A F, FARES E. Facing rim cavities fluctuation modes[J]. Journal of Sound and Vibration, 2014, 333: 2812-2830.
[21] 李玲, 刘沛清, 邢宇, 等. 亚临界雷诺数圆柱绕流气动噪声试验研究[J]. 北京航空航天大学学报, 2016, 42(5): 977-983. LI L, LIU P Q, XING Y, et al. Aeroacoustic measure ments of the flow around a circular cylinder at subcritical Reynolds numbers[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5): 977-983 (in Chinese).
[22] MARSDEN O, BOGEY C, BAILLY C. Investigation of flow features around shallow round cavities subject to subsonic grazing flow[J]. Physics of Fluids, 2012, 24: 125107.
[23] MANOHA E, BULTE J, CARUELLE B. LAGOON: An experimental database for the validation of CFD/CAA methods for landing gear noise prediction: AIAA-2008-2816[R]. Reston: AIAA, 2008.
[24] MANOHA E, BULTE J, CIOBACA V, et al. LAGOON: Further analysis of aerodynamic experiments and early aeroacoustics results: AIAA-2009-3277[R]. Reston: AIAA, 2009.
/
〈 | 〉 |