基于稀疏表示和近似l0范数约束的宽带信号DOA估计
收稿日期: 2016-08-26
修回日期: 2016-12-12
网络出版日期: 2016-12-19
基金资助
国家重点研发计划(2016YFB1001304);国家自然科学基金(61171137)
Broadband signal DOA estimation based on sparse representation and l0-norm approximation
Received date: 2016-08-26
Revised date: 2016-12-12
Online published: 2016-12-19
Supported by
National Key Research and Development Program of China (2016YFB1001304);National Natural Science Foundation of China (61171137)
燕学智 , 温艳鑫 , 刘国红 , 陈建 . 基于稀疏表示和近似l0范数约束的宽带信号DOA估计[J]. 航空学报, 2017 , 38(6) : 320705 -320705 . DOI: 10.7527/S1000-6893.2016.320705
Based on l0-norm approximation, an efficient algorithm is proposed to deal with the localization of the broadband signal under the sparse framework. First, by preprocessing broadband signal, the received data under the same frequency is obtained. Then a sum-average operation to array covariance matrix elements of the received data is made in order to get a low dimensional observation vector and the sparse representation of the new model under sparse framework is built. Finally, exploiting truncated l1 function as the weight coefficients to construct l0-norm penalty sparse reconstruction method and then reconstruct the broadband signal to obtain DOA estimation. The simulation results demonstrate that comparing to the traditional broadband signal DOA estimate algorithms, the proposed algorithm is able to provide higher resolution and estimation accuracy.
Key words: signal processing; broadband signal; sparse reconstruction; DOA estimation; l0-norm
[1] KRIM H, VIBERG M. Two decades of array signal processing research: The parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94.
[2] YADAR A K, SANTOSH S. Comparison of different wideband DOA estimation methods[C]//2015 IEEE International Conference on Computational Intelligence and Computing Research(ICCIC). Piscataway, NJ: IEEE Press, 2015: 1-4.
[3] 邓佳欣, 廖桂生, 杨志伟, 等. 基于虚拟孔径扩展的子带信息融合宽带DOA估计[J]. 系统工程与电子技术, 2016, 38(2): 245-250. DENG J X, LIAO G S, YANG Z W, et al. Subband information fusion for wideband DOA estimation based on virtual array[J]. System Engineering and Electronics, 2016, 38(2): 245-250 (in Chinese).
[4] 金勇, 黄建国, 张立杰. 宽带信号近似最大似然方位估计快速算法[J]. 航空学报, 2008, 29(5): 1264-1268. JIN Y, HUANG J G, ZHANG L J. DOA estimation fast algorithm for wideband sources[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1264-1268 (in Chinese).
[5] WAX M, SHAN T J, KAILATH T. Spatio-temporal spectral analysis by eigenstructure methods[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(4): 817-827.
[6] WANG H, KAVEH M. Coherent signal-subspace processing for the detection and estimaton of angles of muliple wide-band sources[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4): 823-831.
[7] CUI W, QIAN T, TIAN J. Enhanced covariances matrix sparse representation method for DOA estimation[J]. Electronics Letters, 2015, 51(16): 1288-1290.
[8] 沈志博, 赵国庆, 董春曦, 等. 基于压缩感知的频率和DOA联合估计算法[J]. 航空学报, 2014, 35(5): 1357-1364. SHEN Z B, ZHAO G Q, DONG C X, et al. United frequency and DOA estimation algorithm based on compressed sensing[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1357-1364 (in Chinese).
[9] MALIOUTOV D, CETIN M, WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transaction on Signal Processing, 2005, 53(8): 3010-3022.
[10] TIAN Y, SUN X Y, ZHAO S S. Sparse-reconstruction-based direction of arrival, polarisation and power estimation using a cross-dipole array[J]. IET Radar, Sonar & Navigation, 2015, 9(6): 727-731.
[11] HYDER M M, MAHATA K. A robust algorithm for joint sparse recovery[J]. IEEE Signal Processing Letters, 2009, 16(12): 1091-1094.
[12] LIU Z C, WANG X L, ZHAO G H, et al. Wideband DOA estimation based on sparse representation—An extension of l1-SVD in wideband cases[C]//IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC). Piscataway, NJ: IEEE Press, 2013: 1-4.
[13] 赵永红, 张林让, 刘楠, 等. 一种新的基于稀疏表示的宽带信号DOA估计方法[J]. 电子与信息学报, 2015, 37(12): 2935-2940. ZHAO Y H, ZHANG L R, LIU N, et al. A novel method of DOA estimation for wideband signals based on sparse representation[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2935-2940 (in Chinese).
[14] 刘寅, 吴顺君, 吴明宇, 等. 基于空域稀疏性的宽带DOA估计[J]. 航空学报, 2012, 33(11): 2028-2038. LIU Y, WU S J, WU M Y, et al. Wideband DOA estimation based on spatial sparseness[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 2028-2038 (in Chinese).
[15] TIAN Y, SUN X Y, ZHAO S S. DOA and power estimation using a sparse representation of second-order statistics vector and l0-norm approximation[J]. Signal Process, 2014, 105: 98-108.
[16] 田野, 孙晓颖, 秦宇镝. 基于两步加权l1范数约束的高分辨率波达方向和功率估计[J]. 电子与信息学报, 2014, 36(7): 1637-1641. TIAN Y, SUN X Y, QIN Y D. High-resolution direction of-arrival and power estimation using two-stage weighted l1-norm penalty[J]. Journal of Electronics & Information Technology, 2014, 36(7): 1637-1641 (in Chinese).
[17] CANDES E J, TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
[18] CANDES E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Redus Matematique, 2008, 346(9-10): 589-592.
[19] DONOHO D L, ELAD M, TEMLYAKOV V. Stable recovery of sparse overcomplete representation in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
[20] XU X, WEI X, YE Z. DOA estimation based on sparse signal recovery utilizing weighted l1-norm penalty[J]. IEEE Signal Processing Letters, 2012, 19(3): 155-158.
[21] FAN J, LI R. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of American Statistical Association, 2001, 96(456): 1348-1360.
[22] STURM J. Using SeDuMi 1.02, a MATLAB toolox for optimization over svmmetric cones[J]. Optimization Method and Software, 1999, 11(1-4): 625-653.
[23] GRANT M, BOYD S, YE Y. Cvx: Matlab software for disciplined convex programming[EB/OL]. (2008-06-07)[2016-08-26]. http://cvxr.com/cvx.
[24] 陈建, 田野, 孙晓颖. 基于阵列协方差矩阵向量稀疏表示的高分辨波达方向估计[J]. 吉林大学学报: 工学版, 2014, 44(2): 485-489. CHEN J, TIAN Y, SUN X Y. High resolution direction-of-arrival estimation based on a sparse representation of array covariance matrix column vectors[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(2): 485-489 (in Chinese).
/
〈 | 〉 |