电子电气工程与控制

基于稀疏表示和近似l0范数约束的宽带信号DOA估计

  • 燕学智 ,
  • 温艳鑫 ,
  • 刘国红 ,
  • 陈建
展开
  • 吉林大学 通信工程学院, 长春 130022

收稿日期: 2016-08-26

  修回日期: 2016-12-12

  网络出版日期: 2016-12-19

基金资助

国家重点研发计划(2016YFB1001304);国家自然科学基金(61171137)

Broadband signal DOA estimation based on sparse representation and l0-norm approximation

  • YAN Xuezhi ,
  • WEN Yanxin ,
  • LIU Guohong ,
  • CHEN Jian
Expand
  • College of Communication Engineering, Jilin University, Changchun 130022, China

Received date: 2016-08-26

  Revised date: 2016-12-12

  Online published: 2016-12-19

Supported by

National Key Research and Development Program of China (2016YFB1001304);National Natural Science Foundation of China (61171137)

摘要

针对宽带信号的波达方向(DOA)估计问题,在稀疏框架下提出一种近似l0范数约束的宽带信号DOA估计新算法。首先对宽带信号进行预处理,得到同一参考频率点下的接收数据,然后对其协方差矩阵元素进行加和平均运算,得到一个低维的观测向量,并在稀疏框架下进行稀疏表示,最后利用截断l1函数设定权值,构造逼近l0范数约束的稀疏重构方法,进而重构信号,获得宽带信号的DOA估计。仿真结果表明,相比于传统的宽带信号DOA估计算法,所提算法具有更高的分辨率和估计精度。

本文引用格式

燕学智 , 温艳鑫 , 刘国红 , 陈建 . 基于稀疏表示和近似l0范数约束的宽带信号DOA估计[J]. 航空学报, 2017 , 38(6) : 320705 -320705 . DOI: 10.7527/S1000-6893.2016.320705

Abstract

Based on l0-norm approximation, an efficient algorithm is proposed to deal with the localization of the broadband signal under the sparse framework. First, by preprocessing broadband signal, the received data under the same frequency is obtained. Then a sum-average operation to array covariance matrix elements of the received data is made in order to get a low dimensional observation vector and the sparse representation of the new model under sparse framework is built. Finally, exploiting truncated l1 function as the weight coefficients to construct l0-norm penalty sparse reconstruction method and then reconstruct the broadband signal to obtain DOA estimation. The simulation results demonstrate that comparing to the traditional broadband signal DOA estimate algorithms, the proposed algorithm is able to provide higher resolution and estimation accuracy.

参考文献

[1] KRIM H, VIBERG M. Two decades of array signal processing research: The parametric approach[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94.
[2] YADAR A K, SANTOSH S. Comparison of different wideband DOA estimation methods[C]//2015 IEEE International Conference on Computational Intelligence and Computing Research(ICCIC). Piscataway, NJ: IEEE Press, 2015: 1-4.
[3] 邓佳欣, 廖桂生, 杨志伟, 等. 基于虚拟孔径扩展的子带信息融合宽带DOA估计[J]. 系统工程与电子技术, 2016, 38(2): 245-250. DENG J X, LIAO G S, YANG Z W, et al. Subband information fusion for wideband DOA estimation based on virtual array[J]. System Engineering and Electronics, 2016, 38(2): 245-250 (in Chinese).
[4] 金勇, 黄建国, 张立杰. 宽带信号近似最大似然方位估计快速算法[J]. 航空学报, 2008, 29(5): 1264-1268. JIN Y, HUANG J G, ZHANG L J. DOA estimation fast algorithm for wideband sources[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1264-1268 (in Chinese).
[5] WAX M, SHAN T J, KAILATH T. Spatio-temporal spectral analysis by eigenstructure methods[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, 32(4): 817-827.
[6] WANG H, KAVEH M. Coherent signal-subspace processing for the detection and estimaton of angles of muliple wide-band sources[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(4): 823-831.
[7] CUI W, QIAN T, TIAN J. Enhanced covariances matrix sparse representation method for DOA estimation[J]. Electronics Letters, 2015, 51(16): 1288-1290.
[8] 沈志博, 赵国庆, 董春曦, 等. 基于压缩感知的频率和DOA联合估计算法[J]. 航空学报, 2014, 35(5): 1357-1364. SHEN Z B, ZHAO G Q, DONG C X, et al. United frequency and DOA estimation algorithm based on compressed sensing[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5): 1357-1364 (in Chinese).
[9] MALIOUTOV D, CETIN M, WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transaction on Signal Processing, 2005, 53(8): 3010-3022.
[10] TIAN Y, SUN X Y, ZHAO S S. Sparse-reconstruction-based direction of arrival, polarisation and power estimation using a cross-dipole array[J]. IET Radar, Sonar & Navigation, 2015, 9(6): 727-731.
[11] HYDER M M, MAHATA K. A robust algorithm for joint sparse recovery[J]. IEEE Signal Processing Letters, 2009, 16(12): 1091-1094.
[12] LIU Z C, WANG X L, ZHAO G H, et al. Wideband DOA estimation based on sparse representation—An extension of l1-SVD in wideband cases[C]//IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC). Piscataway, NJ: IEEE Press, 2013: 1-4.
[13] 赵永红, 张林让, 刘楠, 等. 一种新的基于稀疏表示的宽带信号DOA估计方法[J]. 电子与信息学报, 2015, 37(12): 2935-2940. ZHAO Y H, ZHANG L R, LIU N, et al. A novel method of DOA estimation for wideband signals based on sparse representation[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2935-2940 (in Chinese).
[14] 刘寅, 吴顺君, 吴明宇, 等. 基于空域稀疏性的宽带DOA估计[J]. 航空学报, 2012, 33(11): 2028-2038. LIU Y, WU S J, WU M Y, et al. Wideband DOA estimation based on spatial sparseness[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 2028-2038 (in Chinese).
[15] TIAN Y, SUN X Y, ZHAO S S. DOA and power estimation using a sparse representation of second-order statistics vector and l0-norm approximation[J]. Signal Process, 2014, 105: 98-108.
[16] 田野, 孙晓颖, 秦宇镝. 基于两步加权l1范数约束的高分辨率波达方向和功率估计[J]. 电子与信息学报, 2014, 36(7): 1637-1641. TIAN Y, SUN X Y, QIN Y D. High-resolution direction of-arrival and power estimation using two-stage weighted l1-norm penalty[J]. Journal of Electronics & Information Technology, 2014, 36(7): 1637-1641 (in Chinese).
[17] CANDES E J, TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
[18] CANDES E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Redus Matematique, 2008, 346(9-10): 589-592.
[19] DONOHO D L, ELAD M, TEMLYAKOV V. Stable recovery of sparse overcomplete representation in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
[20] XU X, WEI X, YE Z. DOA estimation based on sparse signal recovery utilizing weighted l1-norm penalty[J]. IEEE Signal Processing Letters, 2012, 19(3): 155-158.
[21] FAN J, LI R. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of American Statistical Association, 2001, 96(456): 1348-1360.
[22] STURM J. Using SeDuMi 1.02, a MATLAB toolox for optimization over svmmetric cones[J]. Optimization Method and Software, 1999, 11(1-4): 625-653.
[23] GRANT M, BOYD S, YE Y. Cvx: Matlab software for disciplined convex programming[EB/OL]. (2008-06-07)[2016-08-26]. http://cvxr.com/cvx.
[24] 陈建, 田野, 孙晓颖. 基于阵列协方差矩阵向量稀疏表示的高分辨波达方向估计[J]. 吉林大学学报: 工学版, 2014, 44(2): 485-489. CHEN J, TIAN Y, SUN X Y. High resolution direction-of-arrival estimation based on a sparse representation of array covariance matrix column vectors[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(2): 485-489 (in Chinese).

文章导航

/