CFD技术在航空工程领域的应用、挑战与发展
收稿日期: 2016-10-25
修回日期: 2016-11-22
网络出版日期: 2016-12-12
基金资助
国家自然科学基金(11402288);国家重点研发计划(2016YFB0200704);装备预研基金重点项目(9140A13021015KG29038)
CFD technology in aeronautic engineering field: Applications, challenges and development
Received date: 2016-10-25
Revised date: 2016-11-22
Online published: 2016-12-12
Supported by
National Natural Science Foundation of China (11402288); National Key Research and Development Program (2016YFB0200704); Equipment Pre-research Fund Key Projects (9140A13021015KG29038)
周铸 , 黄江涛 , 黄勇 , 刘刚 , 陈作斌 , 王运涛 , 江雄 . CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017 , 38(3) : 20891 -020891 . DOI: 10.7527/S1000-6893.2016.0311
Computational fluid dynamics (CFD) technology has been playing an important role in the field of aeronautic engineering. In this paper, the applications of CFD technology are summarized, and the demands for CFD technology in multidisciplinary coupling problems are expatiated, including aerodynamic design, aeroelasticity, aerodynamic noise, and digital flight. The main challenges that CFD technology is faced with are analyzed through practical applications. Recent research works in flow separation, boundary layer transition, high-order scheme, grid deformation, and typical applications of aerodynamic performance evaluation, flow mechanism analysis, aerodynamic design, aeroelasticity, and aerodynamic noise are described. The key technologies and application prospects of CFD technology developments are then explored.
[1] HARTEN A, OSHER S. Uniformly high order aceurate essentially non-oseillatory sehemes[J]. SIAM Journal on Numerical Analysis, 1987, 24:279-309.
[2] JIANG G, SHU C. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228.
[3] 张涵信. 无波动、无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 66:143-165. ZHANG H X. Non-fluction, non-free parameter dissipation difference schemes[J]. Acta Aerodynamica Sinica, 1988, 66:143-165(in Chinese).
[4] LELE S K. Compact finite-difference schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992, 103(1):16-24.
[5] 张涵信, 庄逢甘. 关于建立高阶精度差分格式的问题[J].空气动力学学报, 1998, 16(1):14-23. ZHANG H X, ZHUANG F G. On the construction of high order accuracy difference schemes[J]. Acta Aerodynamica Sinica,1998, 16(1):14-23(in Chinese).
[6] 傅德薰, 马延文. 高精度差分格式及多尺度流场特性的数值模拟[J]. 空气动力学学报, 1998, 16(1):24-35. FU D X, MA Y W. High order accurate schemes and numerical simulation of multi scale structures in complex flow fields[J]. Acta Aerodynamica Sinica, 1998, 16(1):24-35(in Chinese).
[7] 沈孟育, 蒋莉. 满足熵增原则的高精度高分辨率格式[J]. 清华大学学报(自然科学版), 1999, 39(4):1-5. SHEN M Y, JIANG L. High order accuracy and high resolution schemes satisfying principle of entropy increment[J]. Journal of Tsinghua University (Science and Technology), 1999, 39(4):1-5(in Chinese).
[8] 邓小刚, 刘昕, 毛枚良, 等. 高精度加权紧致非线性格式的研究进展[J]. 力学进展, 2007, 37(3):417-427. DENG X G, LIU X, MAO M L, et al. Advances in high-order accurate weighted compact nonlinear schemes[J]. Advances in Mechanics, 2007, 37(3):417-427(in Chinese).
[9] COLONIUS T, LELE S K. Computational aeroacoustics:Progress on nonlinear problems of sound generation[J]. Progress in Aerospace Sciences, 2004, 40(6):345-416.
[10] VISBAL M R, GAITONDE D V. Higher-order finite-difference schemes on curvilinear and deforming grides[J]. Journal of Computational Physics, 2002, 181(1):155-185.
[11] RIZZETTA D P, VISBAL M R, BLAISDELL G A. A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation[J]. International Journal for Numerical Methods in Fluids, 2003, 42(6):665-693.
[12] LAUNDER B E, SPALDING D B. Lectures in mathematical models of turbulence[M]. London:Academic Press, 1972.
[13] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston:AIAA, 1992.
[14] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[15] VENKATAKRISHNAN V. Perspective on unstructured grid flow solvers[J]. AIAA Journal, 1996, 34(3):533-547.
[16] 张来平, 张涵信. NND格式在非结构网格中的推广[J]. 力学学报, 1996, 28(2):135-142. ZHANG L P, ZHANG H X. Development of NND scheme on unstructured grids[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(2):135-142(in Chinese).
[17] 叶正寅, 杨永年, 钟诚文. 非结构网格生成技术方法研究[J]. 航空计算技术, 1998, 28(1):44-47. YE Z Y, YANG Y N, ZHONG C W. The method investigation in unstructured grid generation technique[J]. Aeronautical Computer Technique, 1998, 28(1):44-47(in Chinese).
[18] KALLINDERIS Y, KHAWAJA A, MCMORRIS H. Hybrid prismatic/tetrahedral grid generation for viscous flows around complex geometries[J]. AIAA Journal, 1996, 34(2):291-298.
[19] 张来平, 张涵信, 高树椿. 矩形/非结构混合网格技术及在二维/三维复杂无粘流场数值模拟中的应用[J]. 空气动力学学报, 1998, 16(1):79-88. ZHANG L P, ZHANG H X, GAO S C. A cartesian/unstructured hybrid grid solver and its applications to 2D/3D complex inviscid flow fields[J]. Acta Aerodynamica Sinica, 1998, 16(1):79-88(in Chinese).
[20] DUBUC L, CANTARITI F, WOODGATE M, et al. A grid deformation technique for unsteady flow computations[J]. International Journal for Numerical Methods in Fluids, 2000, 32(3):285-311.
[21] LI J, LIU Z, HUANG S. Deforming grid technique applied to unsteady viscous flow simulation by a fully implicit solver[J]. Journal of Aircraft, 2005, 42(5):1371-1374.
[22] BENEK J A, BUNING P G, STEGER J L. A 3-D chimera grid embedding technique:AIAA-1985-1523[R]. Reston:AIAA, 1985.
[23] 朱自强, 李津, 张正科, 等. 计算流体力学中的网格生成方法及其应用[J]. 航空学报, 1998, 19(2):152-158. ZHU Z Q, LI J, ZHANG Z K, et al. Grid generation method in cfd and its application[J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(2):152-158(in Chinese).
[24] KU D N. Blood flow in arteries[J]. Annual Review of Fluid Mechanics, 1997, 29:399-434.
[25] PERI D, ROSSETTI M, CAMPANA E F. Design optimiation of ship hulls via CFD techniques[J]. Jounal of Ship Research, 2001, 45(2):141-149.
[26] TAHARA Y, TOHYAMA S. CFD-based multi-objectiove optimization method for ship design[J]. Internatonal Journal Fornumerical Methods in Fluids, 2006, 52:499-527.
[27] BOERNER J, BOYD I D. Numerical simulation of probe measurements in a nonequilibrium plasma, using a detailed model electron fluid:AIAA-2007-0995[R]. Reston:AIAA, 2007.
[28] SNEL H. Review of aerodynamics for wind turbines[J]. Wind Energy, 2003, 6(3):203-211.
[29] SOBIESZCZANSKI-SOBIESKI J. Sensitivity analysis and multidisciplinary optimization for aircraft design:Recent advances and results[J]. Journal of Aircraft, 1990, 27(12):993-1001.
[30] 余雄庆, 丁运亮. 多学科设计优化算法及其在飞行器设计中应用[J]. 航空学报, 2000, 21(1):1-6. YU X Q, DING Y L. Multidisciplinary design optimization a survey of its algorithms and applications to aircraft design[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(1):1-6(in Chinese).
[31] 夏露, 高正红, 李天. 飞行器外形多目标多学科综合优化设计方法研究[J]. 空气动力学学报, 2003, 21(3):275-281. XIA L, GAO Z H, LI T. Investigation of integrated multi-disciplinary and multi-objective optimization of the aircraft configuration design method[J]. Acta Aerodynamica Sinica, 2003, 21(3):275-281(in Chinese).
[32] 何麟书, 王书河, 张玉珠. 飞行器多学科综合设计新算法[J]. 航空学报, 2004, 25(5):465-469(in Chinese). HE L S, WANG S H, ZHANG Y Z. The new algorithm for aircraft multidisciplinary integrated design[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5):465-469(in Chinese).
[33] 苏伟, 高正红, 夏露. 隐身性能约束的多目标气动外形优化设计[J]. 空气动力学学报, 2006, 24(1):137-140. SU W, GAO Z H, XIA L. Multiobjective optimization design of aerodynamic configuration constrained by stealth performance[J]. Acta Aerodynamica Sinica, 2006, 24(1):137-140(in Chinese).
[34] 唐伟, 桂业伟, 王安龄. 飞行器热气动布局优化设计研究[J]. 宇航学报, 2009, 30(5):1803-1807. TANG W, GUI Y W, WANG A L. Proposal of thermal configuration optimization design for a maneuverable vehicle[J]. Journal of Astronautics, 2009, 30(5):1803-1807(in Chinese).
[35] VIANA F A C, SIMPSON T W, BALABANOV V, et al. Metamodeling in multidisciplinary design optimization:how far have we really come[J]. AIAA Journal, 2014, 52(4):670-690.
[36] 梁强, 杨永年, 叶正寅. 三维机翼的型架外形设计研究[J]. 西北工业大学学报, 2002, 20(2):262-264. LIANG Q, YANG Y N, YE Z Y. Analysis of jig-shape design for elastic wing[J]. Journal of Northwestern Polytechnical University, 2002, 20(2):262-264(in Chinese).
[37] 黄江涛, 高正红, 白俊强, 等. RBF径向基函数与Delaunay图映射技术在飞行器型架外形设计中应用研究[J]. 空气动力学学报, 2014, 32(3):328-333. HUANG J T, GAO Z H, BAI J Q, et al. Aircraft jig shape design based on radial basis functions and Delaunay graphic mapping[J]. Acta Aerodynamica Sinica, 2014, 32(3):328-333(in Chinese).
[38] 杨智春, 夏巍. 壁板颤振的分析模型、数值求解方法和研究进展[J]. 力学进展, 2010, 40(1):81-98. YANG Z C, XIA W. Analytical models, numerical solutions and advances in the study of panel flutter[J]. Advances in Mechanics, 2010, 40(1):81-98(in Chinese).
[39] 张伟伟, 钟华寿, 肖华, 等. 颤振飞行试验的边界预测方法回顾与展望[J]. 航空学报, 2015, 36(5):1367-1384. ZHANG W W,ZHONG H S, XIAO H, et al. Review and prospect of flutter boundary prediction methods for flight flutter testing[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1367-1384(in Chinese).
[40] XIANG J, YAN Y, LI D. Recent advance in nonlinear aeroelastic analysis and control of the aircraft[J]. Chinese Journal of Aeronautics, 2014, 27(1):12-22.
[41] 许晓平, 祝小平, 周洲, 等. 基于CFD方法的阵风响应与阵风减缓研究[J]. 西北工业大学学报, 2010, 28(6):818-823. XU X P, ZHU X P, ZHOU Z, et al. Further exploring Cfd-based gust response and gust alleviation[J]. Journal of Northwestern Polytechnical University, 2010, 28(6):818-823(in Chinese).
[42] 聂雪媛, 杨国伟. 基于CFD降阶模型的阵风减缓主动控制研究[J]. 航空学报, 2015, 36(4):1103-1111. NIE X Y,YANG G W. Gust alleviation active control based on CFD reduced-order models[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1103-1111(in Chinese).
[43] WANG M, FREUND J B, LELE S K. Computational prediction of flow-generated sound[J]. Annual Review of Fluid Mechanics, 2006, 38:483-512.
[44] FARASSAT F, CASPER J H. Towards an airframe noise prediction methodology:Survey of current approaches[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2006.
[45] WAGNER C, HVTTL T, SAGAUT P. Large-eddy simulation for acoustics[M]. London:Cambridge University Press, 2007:441.
[46] 宋文萍, 余雷, 韩忠华. 飞机机体气动噪声计算方法综述[J]. 航空工程进展, 2010(2):125-131. SONG W P, YU L, HAN Z H. Status of investigation on airframe noise computation[J]. Advances in Aeronautical Science and Engineering, 2010(2):125-131(in Chinese).
[47] 李晓东, 江旻, 高军辉, 等. 计算气动声学进展与展望[J]. 中国科学:物理学力学天文学, 2014, 44(3):234-248. LI X D, JIANG M, GAO J H, et al. Progress and prospective of computational aeroacoustics[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(3):234-248(in Chinese).
[48] 陶洋, 范召林, 吴继飞. 基于CFD的方形截面导弹纵向虚拟飞行模拟[J]. 力学学报, 2010, 42(2):169-176. TAO Y, FAN Z L, WU J F. CFD based virtual flight simulation of square cross-section missile with control in longitudinal flight[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2):169-176(in Chinese).
[49] 达兴亚, 陶洋, 赵忠良. 基于预估校正和嵌套网格的虚拟飞行数值模拟[J]. 航空学报, 2012, 33(6):977-983. DA X Y, TAO Y, ZHAO Z L. Numerical simulation of virtual flight based on prediction-correction coupling method and chimera grid[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6):977-983(in Chinese).
[50] 常兴华, 马戎, 张来平, 等. 基于计算流体力学的"虚拟飞行"技术及初步应用[J]. 力学学报, 2015, 47(4):596-604. CHANG X H, MA R, ZHANG L P, et al. Study on cfd-based numerical virtual flight technology and preliminary application[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4):596-604(in Chinese).
[51] 刘刚, 肖中云, 王建涛, 等. 考虑约束的机载导弹导轨发射数值模拟[J]. 空气动力学学报, 2015, 33(2):192-197. LIU G, XIAO Z Y, WANG J T, et al. Numerical simulation of missile air-launching process under rail slideway constraints[J]. Acta Aerodynamica Sinica, 2015, 33(2):192-197(in Chinese).
[52] 李孝伟, 范绪箕. 基于动态嵌套网格的飞行器外挂物投放的数值模拟[J]. 空气动力学学报, 2004, 22(1):114-117. LI X W, FAN X J. Simulation of the release of store based on the moving chimera grid technique[J]. Acta Aerodynamica Sinica, 2004, 22(1):114-117(in Chinese).
[53] 田书玲, 伍贻兆, 夏健. 用动态非结构重叠网格法模拟三维多体相对运动绕流[J]. 航空学报, 2007, 28(1):46-51. TIAN S L, WU Y Z, XIA J. Simulation of flows past multi-body in relative motion with dynamic unstructured overset grid method[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):46-51(in Chinese).
[54] 张玉东, 纪楚群. 子母弹分离过程的数值模拟方法[J]. 空气动力学学报, 2003, 21(1):47-52. ZHANG Y D, JI C Q. The numerical simulation of submution separation processes from dispenser[J]. Acta Aerodynamica Sinica, 2003, 21(1):47-52(in Chinese).
[55] 王建涛, 易贤, 肖中云, et al. ARJ21-700飞机冰脱落数值模拟[J]. 空气动力学学报, 2013, 31(4):430-436. WANG J T,YI X,XIAO Z Y, et al. Numerical simulation of ice shedding from ARJ21-700[J]. Acta Aerodynamica Sinica, 2013, 31(4):430-436(in Chinese).
[56] BALLMANN J, BOUCKE A, CHEN B, et al. Aero-structural wind tunnel experiments with elastic wing models at high Reynolds numbers (HIRENASD-ASDMAD):AIAA-2011-882[R]. Reston:AIAA, 2011.
[57] XU G L, JIANG X, LIU G. Delayed-detached-eddy simulation of fighter aircraft at high angle of attack[J]. Acta Mechanica Sinica, 2016, 32(4):588-603.
[58] 唐志共, 张益荣, 陈坚强, 等. 更准确、更精确、更高效——高超声速流动数值模拟研究进展[J]. 航空学报, 2015, 36(1):120-134. TANG Z G, ZHANG Y R, CHEN J Q, et al. More fidelity, more accurate, more efficient-Progress on numerical simulations for hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):120-134(in Chinese).
[59] MENTER F R. Improved two-equation k-ω turbulence models for aerodynamic flows:NASA/TM-1992-103975[R]. Washington, D.C.:NASA, 1992.
[60] CRAFT T J, LAUNDER B E, SUGA K. Development and application of a cubic eddy-viscosity model of turbulence[J]. International Journal of Heat and Fluid Flow, 1996, 17:108-115.
[61] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5):562-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5):562-589(in Chinese).
[62] SMAGORINSKY J. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91:99-164.
[63] SPALART P R, JOU W H, STRELETS M, et al. Comments of feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//1st AFOSR International Conference on DNS/LES, 1997.
[64] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195.
[65] VATSA V N, LOCKARD D P. Assessment of hybrid RANS/LES turbulence mode for aeroacoustics applications:AIAA-2010-4011[R]. Reston:AIAA, 2010.
[66] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649.
[67] MENTER F R, EGOROV Y. A scale adaptive simulation model using two-equation models:AIAA-2005-1095[J]. Reston, AIAA, 2005.
[68] 陈逖, 刘卫东, 范晓樯, 等. "回收/调节"方法在混合LES/RANS模拟方法中的应用[J]. 航空动力学报, 2011, 26(6):1215-1222. CHEN T, LIU W D, FAN X Q, et al, Application of recycling/rescaling method in hybrid LES/RANS simulation method[J]. Journal of Aerospace Power, 2011, 26(6):1215-1222(in Chinese).
[69] JIANG Y, MAO M L, DENG X G, et al. Numerical investigation on body-wake flow interaction over rod-airfoil configuration[J]. Journal of Fluid and Mechanics, 2015, 779:1-35.
[70] MAO M L, JIANG Y, DENG X G, et al. Noise prediction in subsonic flow using seventh-order dissipative compact scheme on curvilinear mesh[J]. Advances in Applied Mathematics & Mechanics, 2016, 8(2):236-256.
[71] 张坤, 宋文萍. 基于线性稳定性分析的eN方法在准确预测翼型气动特性中的应用[J]. 西北工业大学学报, 2011, 27(3):294-299. ZHANG K, SONG W P. Application of the full eN transition prediction method to aerodynamic characteristics calculation of accurate airfoils[J]. Journal of Northwestern Polytechnical University, 2011, 27(3):294-299(in Chinese).
[72] VAN INGEN J L. A suggested semi-empirical method for the calculation of the boundary-layer transition region[J]. Journal of Applied Physics, 1956, 9(15):112-147.
[73] PERRAUD J, ARNAL D, CASALIS G, et al. Automatic transition predictions using simplified methods[J]. AIAA Journal, 2009, 47(11):2676-2684.
[74] BERTOLOTTI F P. Linear and nonlinear stability of boundary layers with streamwise varying properties[D]. Columbus:The Ohio State University, 1990.
[75] BERTOLOTTI F P, HERBERT T, SPALART P. Linear and nonlinear stability of the Blasius boundary[J]. Journal of Fluid Mechanics, 1992, 242:441-474.
[76] HERBERT T. Parabolized stability equations[J]. Annual Review of Fluid Mechanics, 1997, 29:245-283.
[77] 徐国亮, 符松. 可压缩横流失稳及其控制[J]. 力学进展, 2012, 42(3):262-273. XU G L, FU S. The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3):262-273(in Chinese).
[78] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-Part I:Model formulation[J]. Journal of Turbomachinery, 2006, 128:413-422.
[79] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[80] LANGTRY R B, MENTER F R. Transition modeling for general CFD application in aeronautics:AIAA-2005-522[R]. Reston:AIAA, 2005.
[81] 张玉伦, 王光学, 孟德虹, 等. γ-Reθ转捩模型的标定研究[J]. 空气动力学学报, 2011, 29(3):295-301. ZHANG Y L, WANG G X, MENG D H,et al. Calibration of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2011, 29(3):295-301(in Chinese).
[82] 牟斌, 江雄, 肖中云, 等. γ-Re转捩模型的标定与应用[J]. 空气动力学学报, 2012, 31(1):103-109. MOU B, JIANG X, XIAO Z Y, et al. Implementation and caliberation of γ-Re transition model[J]. Acta Aerodynamica Sinica, 2012, 31(1):103-109(in Chinese).
[83] CHENG G, NICHOLS R, NEROORKAR K D, et al. Validation and assessment of turbulence transition models:AIAA-2009-1141[R]. Reston:AIAA, 2009.
[84] BENSASSI K, LANI A, RAMBAUD P. Numerical investigations of local correlation-based transition model in hypersonic flows:AIAA-2012-3151[R]. Reston:AIAA, 2012.
[85] 张晓东, 高正红. 关于补充Langtry的转捩模型经验修正式的数值探讨[J]. 应用数学和力学, 2010, 31(5):544-552. ZHANG X D, GAO Z H. Numerical discuss to complete empirical correlation in Langtry's transition model[J]. Applied Mathematics and Mechanics, 2010, 31(5):544-552(in Chinese).
[86] CODER J G, MAUGHMER M D. A CFD-compatible transition model using an amplification factor transport equation:AIAA-2013-0253[J]. Reston:AIAA, 2013.
[87] SCHMITT V, MONNERIS B, DOREY G, et al. Etude de la couche limite tridimensionelle sur une aile en fleche:Rapport Technique No 14/1713 AN[R]. 1975.
[88] COCKBURN B, KARNIADAKIS G E, SHU C W. Discontinuous Galerkin methods:Theory, computation and applications[M]. Berlin Heidelberg:Springer, 2000.
[89] ZHANG L, LIU W, HE L, et al. A class of hybrid DG/FV methods for conservation laws I:Basic formulation and one-dimensional systems[J]. Journal of Computational Physics, 2012, 231:1081-1103.
[90] ZHANG L, LIU W, HE L, et al. A class of hybrid DG/FV methods for conservation laws II:Two-dimensional cases[J]. Journal of Computational Physics, 2012, 231:1104-1120.
[91] ZHANG L, LIU W, HE L, et al. A class of hybrid DG/FV methods for conservation laws III:Two-dimensional Euler equations[J]. Communications in Computational Physics, 2012, 12(1):284-314.
[92] ZHANG L, LIU W, LI M, et al. A class of DG/FV hybrid schemes for conservation law IV:2D viscous flows and implicit algorithm for steady cases[J]. Computers & Fluids, 2014, 97:110-125.
[93] VAN DER WEIDE E, DECONINCK H, ISSMANNE, et al. Fluctuation splitting schemes for multidimensional convection problem:An alternative to finite volume and finite element methods[J]. Computational Mechanics, 1999, 23(2):199-208.
[94] DECONINCK H, SERMEUS K, ABGRALL R. Status of multidimensional upwind residual distribution schemes and applications in aeronautics:AIAA-2000-2328[R]. Reston:AIAA, 2000.
[95] ABGRALL R, MEZINE M. Construction of second order accurate monotone and stable residual distribution schemes for steady problems[J]. Journal of Computational Physics, 2004, 195:474-507.
[96] LELE S K. Compact finite schemes with spectral-like resolution[J]. Journal of Computational Physics, 1992, 103(1):16-42.
[97] CASPER J, MEADOWS K R. Using high-order accurate essentially nonoscillatory schemes for aeroacoustic applications[J]. AIAA Journal, 1996, 34(2):244-250.
[98] DENG X G, MIN Y, MAO M L, et al. Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2013, 239:90-111.
[99] 王光学, 邓小刚, 刘化勇, 等. 高阶精度格式WCNS在三角翼大攻角模拟中的应用研究[J]. 空气动力学学报, 2012, 30(1):28-33 WANG G X,DENG X G, LIU H Y, et al. Application of high-order scheme (WCNS) at high angles of incidence for delta wing[J]. Acta Aerodynamica Sinica,2012,30(1):28-33(in Chinese).
[100] 李松, 王光学, 王运涛, 等. WCNS格式在梯形翼高升力构型模拟中的应用研究[J]. 空气动力学学报, 2014, 32(4):439-445. LI S,WANG G X, WANG Y T, et al. Numerical simulation of high lift trapezoidal wing configuration with WCNS-scheme[J]. Acta Aerodynamica Sinica,2014, 32(4):439-445(in Chinese).
[101] 王运涛, 孙岩, 王光学, 等. DLR-F6翼身组合体的高阶精度数值模拟[J]. 航空学报, 2015, 36(9):2923-2929. WANG Y T, SUN Y, WANG G X, et al. High-order accuracy numerical simulation of DLR-F6 wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2923-2929(in Chinese).
[102] LIU X Q, QIN N. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211:405-423.
[103] BUHMANN M. Radial basis functions[M]. Cambridge:Cambridge University Press, 2005.
[104] WENDLAND H. Fast evaluation of radial basis functions:Methods based on partition of unity[M]//Approximation Theory X:Wavelets, Splines, and Applications. Nashville, TX:Vanderbilt University Press, 2002:473-483.
[105] HUANG J, GAO Z, WANG C. A new grid deformation technology with high quality and robustness based on quaternion[J]. Chinese Journal of Aeronautics, 2014, 27(5):1078-1085.
[106] SPEKREIJSE S P, BOERSTOEL J W. An algorithm to check the topological validity of multiblock domain decompositions[C]//Proceedings 6th International Conference on Numerical Grid Generation in Computational Field Simulations, 1998.
[107] MARUYAMA D, BAILLY D, CARRIER G. High quality grid deformation using quaternions for orthogonality preservation:AIAA-2012-0063[R]. Reston:AIAA, 2012.
[108] SMITH RE. Transfinite interpolation (TFI) generation systems[M]//WEATHERILL N P, THOMPSON J F, SONI B K. Handbook of Grid Generation. CRC Press, 1999.
[109] FARHAT C, DEGAND C, KOOBUS B, et al. Torsional springs for two-dimensional dynamic unstructured fluid grides[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 163(1):231-245.
[110] LI Z H, ZHANG H X. Study on gas kinetic unified algorithm for flows from rarefied transition to continuum[J]. Journal of Computational Physics, 2004, 193(2):708-738.
[111] SLOTNICK J, KHODADOUST A, ALONSO J. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
/
〈 | 〉 |