飞机结冰致灾与防护专栏

表面凸起对机翼热气防冰腔内换热强化的影响

  • 郭之强 ,
  • 郑梅 ,
  • 董威 ,
  • 朱剑鋆
展开
  • 1. 上海交通大学 机械与动力工程学院, 上海 200240;
    2. 中国航发商用航空发动机有限责任公司, 上海 201108

收稿日期: 2016-08-26

  修回日期: 2016-11-16

  网络出版日期: 2016-11-30

基金资助

国家“973”计划(2015CB755800);国家自然科学基金(11572195,11272212)

Influence of surface convex on heat transfer enhancement of wing hot air anti-icing system

  • GUO Zhiqiang ,
  • ZHENG Mei ,
  • DONG Wei ,
  • ZHU Jianjun
Expand
  • 1. School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China;
    2. AECC Commercial Aircraft Engine Co., Ltd, Shanghai 201108, China

Received date: 2016-08-26

  Revised date: 2016-11-16

  Online published: 2016-11-30

Supported by

National Basic Research Program of China (2015CB755800); National Natural Science Foundation of China (11572195, 11272212)

摘要

采用数值模拟对比研究了光滑表面和具有表面凸起结构热气防冰腔内湍流流动的换热特性。机翼防冰腔内笛形管具有三排射流孔,射流孔角度有0°±45°组合以及0°±30°组合。为了强化射流冲击光滑表面的流动换热,在防冰腔内表面正对射流孔的射流冲击区,设计了表面凸起结构,用来强化射流对壁面的冲击换热效果并起到引流作用。通过改变射流孔射流角度研究了射流角度对传热特性的影响。计算结果表明:与光滑防冰腔内表面射流冲击换热相比,表面凸起结构可以将均匀发散的壁面射流集中为高速壁面射流,提高壁面射流区的对流换热系数,从而增强射流冲击换热效果,机翼前缘的强化换热效果尤为明显。

本文引用格式

郭之强 , 郑梅 , 董威 , 朱剑鋆 . 表面凸起对机翼热气防冰腔内换热强化的影响[J]. 航空学报, 2017 , 38(2) : 520709 -520718 . DOI: 10.7527/S1000-6893.2016.0300

Abstract

A comparative study is conducted to investigate the heat transfer characteristic of turbulent flow in the hot air anti-icing system with and without surface convex by using numerical simulation method. Three-row impingement jet holes are set on the piccolo tube, with different impinging angles:0°±45° and 0°±30°. In order to strengthen the impinging heat transfer, the surface protrusions located in front of the impinging holes are designed as a guiding passage of the hot air. The influence of jet angle on heat transfer characteristics is studied by changing the angle of the jet. Calculation results show that the surface structures can enable the wall jet flow dispersing uniformly to be concentrated into wall jet flow with higher speed. Compared to the jet impingement heat transfer of anti-icing cavity with smooth surface, the convective heat transfer of the wall jet zone is enhanced. The heat transfer of jet impingement, especially on the wing leading edge, is thus increased.

参考文献

[1] JUSIONIS V J. Heat transfer from impinging gas jets on an enclosed concave surface[J]. Journal of Aircraft, 1970, 7(1):87-88.
[2] LIVINGOOD J N B, GAUNTNER J W. Average heat-transfer characteristics of a row of circular air jets impinging on a concave surface:NASA TM X-2657[R]. Washington, D.C.:NASA, 1972.
[3] HRYCAK P. Heat transfer from a row of jets impinging on concave semi-cylindrical surface[C]//International Heat Transfer Conference, 1978.
[4] HRYCAK P. Heat transfer and flow characteristics of jets impinging on a concave hemispherical plate[C]//Heat transfer Proceedings of the Seventh International Conference, 1982.
[5] HOLLWORTH B R, WILSON S I. Entrainment effects on impingement heat transfer. I Measurements of heated jet velocity and temperature distributions, and recovery temperatures on target surface[J]. Journal of Heat Transfer, 1983, 106(4):797-803.
[6] HOLLWORTH B R, GERO L R. Entrainment effects on impingement heat transfer. II-Local heat transfer measurements[C]//National Heat Transfer Conference, 1984.
[7] GOLDSTEIN R J, SOBOLIK K A, SEOL W S. Effect of entrainment on the heat transfer to a heated circular air jet impinging on a flat surface[J]. Journal of Heat Transfer, 1990, 112(3):608-611.
[8] FENOT M, VULLIERME J J, DORIGNAC E. Local heat transfer due to several configurations of circular air jets impinging on a flat plate with and without semi-confinement[J]. International Journal of Thermal Sciences, 2005, 44(7):665-675.
[9] LIVINGOOD J N B, GAUNTNER J W. Local heat-transfer characteristics of a row of circular air jets impinging on a concave semicylindrical surface:NASA TN D-7127[R]. Washington, D.C.:NASA, 1973.
[10] IACOVIDES H, KOUNADIS D, LAUNDER B E, et al. Experimental study of the flow and thermal development of a row of cooling jets impinging on a rotating concave surface[J]. Journal of Turbomachinery, 2004, 127(1):222-229.
[11] IMBRIALE M, IANIRO A, MEOLA C, et al. Convective heat transfer by a row of jets impinging on a concave surface[J]. International Journal of Thermal Sciences, 2014, 75(1):153-163.
[12] HOSSEINALIPOUR S M, MUJUMDAR A S. Comparative evaluation of different turbulence models for confined impinging and opposing jet flows[J]. Numerical Heat Transfer Applications, 1995, 28(6):647-666.
[13] SEYEDEIN S H, HASAN M, MUJUMDAR A S. Modelling of a single confined turbulent slot jet impingement using various k-ω turbulence models[J]. Applied Mathematical Modelling, 1994, 18(10):526-537.
[14] WANG S J, MUJUMDAR A S. A comparative study of five low Reynolds number k-ε models for impingement heat transfer[J]. Applied Thermal Engineering, 2005, 25(1):31-44.
[15] SHARIF M A R, MOTHE K K. Evaluation of turbulence models in the prediction of heat transfer due to slot jet impingement on plane and concave surfaces[J]. Numerical Heat Transfer Fundamentals, 2009, 55(4):273-294.
[16] KUMAR B V N R, PRASAD B V S S S. Computational flow and heat transfer of a row of circular jets impinging on a concave surface[J]. Heat & Mass Transfer, 2008, 44(6):667-678.
[17] SHARIF M A R, MOTHE K K. Parametric study of turbulent slot-jet impingement heat transfer from concave cylindrical surfaces[J]. International Journal of Thermal Sciences, 2010, 49(2):428-442.
[18] MATTOS B S, OLIVEIRA G L. Three-dimensional thermal coupled analysis of a wing slice slat with a piccolo tube:AIAA-2000-3921[R]. Reston:AIAA, 2000.
[19] PLANQUART P H. Experimental and numerical optimization of a wing leading edge hot air anti-icing system:AIAA-2005-1277[R]. Reston:AIAA, 2005.
[20] LIU H H T, HUA J. Three-dimensional integrated thermodynamic simulation for wing anti-Icing system[J]. Journal of Aircraft, 2004, 41(6):1291-1297.
[21] FREGEAU M, SAEED F, PARASCHIVOIU I. Surface heat transfer study for ice accretion and anti-icing prediction in three dimension:AIAA-2004-0063[R]. Reston:AIAA, 2004.
[22] WANG H. Anti-icing simulation in wet air of a piccolo system using FENSAP-ICE:SAE-2007-01-3357[R]. New York:SAE, 2007.
[23] 裘燮纲, 余小章. 微引射防冰腔热力计算[J]. 航空学报, 1994, 15(9):1110-1113. QIU X G, YU X Z. Thermal calculation for anti-icer with micro-ejector[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(9):1110-1113(in Chinese).
[24] 梁青森, 陈维建, 马辉,等. 微引射热气除冰腔引射性能分析[J]. 南京航空航天大学学报, 2013, 45(3):341-346. LIANG Q S, CHEN W J, MA H, et al. Injection performance of hot-air de-icer with micro-injector[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(3):341-346(in Chinese).
[25] 彭珑, 卜雪琴, 林贵平, 等. 热气防冰腔结构参数对其热性能影响研究[J]. 空气动力学学报, 2014, 32(6):848-853. PENG L, BU X Q, LIN G P, et al. Influence of the structural parameters on thermal performance of the hot air anti-icing system[J]. Acta Aerodynamica Sinica, 2014, 32(6):848-853(in Chinese).
[26] HANNAT R, MORENCY F. Numerical validation of conjugate heat transfer method for anti-/de-icing piccolo system[J]. Journal of Aircraft, 2014, 51(1):104-116.
[27] GOLDSTEIN R J, BEHBAHANI A I, HEPPELMANN K K. Streamwise distribution of the recovery factor and the local heat transfer coefficient to an impinging circular air jet[J]. International Journal of Heat & Mass Transfer, 1986, 29(8):1227-1235.

文章导航

/