流体力学与飞行力学

低速流场中柔性悬臂板的后颤振响应

  • 陈涛 ,
  • 徐敏 ,
  • 谢丹 ,
  • 安效民
展开
  • 西北工业大学 航天学院, 西安 710072

收稿日期: 2016-03-11

  修回日期: 2016-11-14

  网络出版日期: 2016-11-21

基金资助

国家自然科学基金(11202165,11402212)

Post flutter response of flexible cantilever plate in low speed flow field

  • CHEN Tao ,
  • XU Min ,
  • XIE Dan ,
  • AN Xiaomin
Expand
  • School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2016-03-11

  Revised date: 2016-11-14

  Online published: 2016-11-21

Supported by

National Natural Science Foundation of China (11202165, 11402212)

摘要

建立了一个新的非线性气动弹性模型,对低速流场中柔性悬臂板的后颤振响应特性进行了分析。建模中考虑了结构几何非线性、气动力非线性以及两者之间的强耦合效应。通过实验数据对所建立的气动弹性模型进行了验证。发现在低速流场中柔性悬臂板可能会以周期加倍的方式进入混沌运动。结构几何非线性效应和翼尖涡引起的非定常气动力效应对柔性悬臂板的结构响应有显著影响,而尾涡变形引起的非定常气动力对结构运动的影响较小。还研究了不同耦合算法的差异,给出了小展弦比大柔性结构非线性气动弹性数值仿真时耦合策略的选择依据。

本文引用格式

陈涛 , 徐敏 , 谢丹 , 安效民 . 低速流场中柔性悬臂板的后颤振响应[J]. 航空学报, 2017 , 38(3) : 120215 -120215 . DOI: 10.7527/S1000-6893.2016.0296

Abstract

A new nonlinear aeroelastic model is established for the analysis of post flutter behavior of the flexible cantilever plate in low speed flows. Geometric nonlinearity, aerodynamic nonlinearity as well as the strong coupling effect between geometric and aerodynamic nonlinearities are considered in the modeling. The aeroelastic model is verified with experimental data. The study shows that the flexible cantilever plate in low speed flows can enter into chaotic movement by means of periodic doubling in structural response. It is found that geometric nonlinearity and the unsteady aerodynamic effect caused by tip vortexes have significant impact on the structural response, while the unsteady aerodynamic force caused by deformation of wake vortexes has slight impact on the structural response. Different coupling strategies are also investigated to provide a reference for the selection of coupling strategy in nonlinear aeroelastic simulations of low-aspect-ratio flexible structures in low speed flows.

参考文献

[1] DUNNMON J A, STANTON S C, MANN B P, et al. Power extraction from aeroelastic limit cycle oscillations[J]. Journal of Fluids and Structures, 2011, 27(8):1182-1198.
[2] DOARÉ O, MICHELIN S. Piezoelectric coupling in energy-harvesting fluttering flexible plates:Linear stability analysis and conversion efficiency[J]. Journal of Fluids and Structures, 2011, 27(8):1357-1375.
[3] LEE B H K, PRICE S J, WONG Y S. Nonlinear aeroelastic analysis of airfoils:Bifurcation and chaos[J]. Progress in Aerospace Sciences, 1999, 35(3):205-334.
[4] TANG D, DOWELL E H, HALL K C. Limit cycle oscillations of a cantilevered wing in low subsonic flow[J]. AIAA Journal, 1999, 37(3):364-371.
[5] ATTAR P J, DOWELL E H, WHITE J R. Modeling the LCO of a delta wing using a high fidelity structural model:AIAA-2004-1692[R]. Reston:AIAA, 2004.
[6] CAVALLARO R, IANNELLI A, DEMASI L, et al. Phenomenology of nonlinear aeroelastic responses of highly deformable joined-wings configurations:AIAA-2014-1199[R]. Reston:AIAA, 2014.
[7] ARENA A, LACARBONARA W, MARZOCCA P. Nonlinear aeroelastic formulation and postflutter analysis of flexible high aspect ratio wings[J]. Journal of Aircraft, 2013, 50(6):1748-1764.
[8] RELVAS A, SULEMAN A. Fluid-structure interaction modelling of nonlinear aeroelastic structures using the finite element corotational theory[J]. Journal of Fluids and Structures, 2006, 22(1):59-75.
[9] 尹维龙, 田东奎. 柔性翼型的气动弹性建模与颤振特性分析[J]. 哈尔滨工业大学学报, 2012, 44(9):69-72. YIN W L, TIAN D K. Aeroelastic modeling and flutter characteristics of flexible aerofoil[J]. Journal of Harbin Institute of Technology, 2012, 44(9):69-72(in Chinese).
[10] 谢长川, 吴志刚, 杨超. 大展弦比柔性机翼的气动弹性分析[J]. 北京航空航天大学学报, 2003, 29(12):1087-1090. XIE C C, WU Z G, YANG C. Aeroelastic analysis of flexible large aspect ratio wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(12):1087-1090(in Chinese).
[11] 张健, 向锦武. 柔性飞机非线性气动弹性与飞行动力学耦合静、动态特性[J]. 航空学报, 2011, 32(9):1569-1582. ZHANG J, XIANG J W. Static and dynamic characteristics of coupled nonlinear aeroelasticity and flight dynamics of flexible aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1569-1582(in Chinese).
[12] GORDNIER R E, VISBAL M R. Development of a three-dimensional viscous aeroelastic solver for nonlinear panel flutter[J]. Journal of Fluids and Structures, 2002, 16(4):497-527.
[13] MURUA J, PALACIOS R, GRAHAM J M R. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics[J]. Progress in Aerospace Sciences, 2012, 55(5):46-72.
[14] 刘燚, 谢长川, 王立波, 等. 柔性飞机大变形曲面气动力计算及配平分析[J]. 工程力学, 2015, 32(10):239-249. LIU Y, XIE C C, WANG L B, et al. Nonplanar aerodynamic computation and trim analysis under large deflection of flexible aircraft[J]. Engineering Mechanics, 2015, 32(10):239-249(in Chinese).
[15] 宋磊, 杨华, 解静峰, 等. 基于改进涡格法的飞翼布局飞机稳定性导数计算[J]. 南京航空航天大学学报, 2014, 46(3):457-462. SONG L, YANG H, XIE J F, et al. Predicting stability derivatives of flying wing aircraft based on improved vortex lattice method[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2014, 46(3):457-462(in Chinese).
[16] ROCCIA B A, PREIDIKMAN S, MASSA J C, et al. Modified unsteady vortex-lattice method to study flapping wings in hover flight[J]. AIAA Journal, 2013, 51(11):2628-2642.
[17] 贺红林, 周翔. 柔性扑翼非定常涡格法气动力计算的改进与实现[J]. 航空学报, 2010, 31(6):1121-1126. HE H L, ZHOU X. Implementation of an improved unsteady vortex lattice method for flexible flapping-wing aerodynamic computation[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1121-1126(in Chinese).
[18] PIPERNO S, FARHAT C. Partitioned procedures for the transient solution of coupled aeroelastic problems-Part II:Energy transfer analysis and three-dimensional applications[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(24-25):3147-3170.
[19] VU-QUOC L, TAN X G. Optimal solid shells for non-linear analysis of multilayer composites. 1. Static[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(9-10):975-1016.
[20] CHEN T, XU M, XIE L. Aeroelastic modeling using geometrically nonlinear solid-shell element[J]. AIAA Journal, 2014, 52(9):1980-1993.
[21] LEVIN D, KATZ J. A vortex-lattice method for the calculation of the nonsteady separated flow over delta wings:AIAA-1980-1803[R]. Reston:AIAA, 1980.
[22] 曹志远. 板壳振动理论[M]. 北京:中国铁道出版社, 1989:455-457. CAO Z Y. Vibration theory of plates and shells[M]. Beijing:China Railway Press, 1989:455-457(in Chinese).
[23] XIE D, XU M, DAI H, et al. Observation and evolution of chaos for a cantilever plate in supersonic flow[J]. Journal of Fluids and Structures, 2014, 50(6):271-291.
[24] HALLISSY P B, CESNIK C E S. High-fidelity aeroelastic analysis of very flexible aircraft:AIAA-2011-1914[R]. Reston:AIAA, 2011.

文章导航

/