介质涂覆位置对球面收敛喷管电磁散射特性影响
Electromagnetic scattering characteristics of spherical convergent vector nozzle with coating medium at different parts
Received date: 2016-05-11
Revised date: 2016-11-10
Online published: 2016-11-21
外形设计和隐身材料使用是缩减目标雷达散射截面积(RCS)的两种常用方法。为了研究雷达吸波材料(RAM)对于球面收敛矢量喷管(SCFN)的RCS减缩效果,采用引入阻抗边界条件后的迭代物理光学(IPO)法,研究了球面收敛二元喷管及8种吸波材料涂覆方案的电磁散射特性,并获得了X波段下9种模型的后向RCS随探测角度的变化规律。研究结果表明:吸波材料涂覆可以有效地缩减球面收敛喷管的RCS;合理的涂覆方案可以在保证RCS缩减效果的基础上,降低吸波材料的使用量;相比全涂覆方案,仅在喷管出口和球面段进行涂覆,可以在吸波材料减少30%使用量的情况下,达到全涂覆方案80%的缩减效果。
郭霄 , 杨青真 , 施永强 , 杨惠成 , 白进 . 介质涂覆位置对球面收敛喷管电磁散射特性影响[J]. 航空学报, 2017 , 38(4) : 320430 -320430 . DOI: 10.7527/S1000-6893.2016.0295
Shape design and stealth materials are generally used to reduce the radar cross section (RCS) of the target. To investigate the reduction effect of radar absorbing material (RAM) on the RCS of the spherical convergent vector nozzle (SCFN), the electromagnetic scattering characteristics of SCFN without coating radar absorbing material and eight coating solutions are studied and the backward RCS changing rule of the nine models in X band are obtained by using the iterative physics optics (IPO) with impedance boundary condition.The results show that coating the RAM can effectively reduce the RCS of the SCFN. A reasonable coating program can reduce the usage of the RAM and ensure the RCS reduction effect at the same time. It is found that 80% reduction effect of the RCS can be achieved and 30% less RAMs are used by coating only the wall of the spherical area and nozzle exit.
[1] 张考, 马东立. 军用飞机生存力与隐身飞机设计[M]. 北京:国防工业出版社, 2002:54-55. ZHANG K, MA D L. Military aircraft survivability and stealth design[M]. Beijing:National Defense Industry Press, 2002:54-55 (in Chinese).
[2] 梁春华, 靳宝林, 李雨桐. 球面收敛调节片推力矢量喷管的发展[J]. 航空发动机, 2002(3):55-58. LIANG C H, JIN B L, LI Y T. Development of spherical convergent flap nozzle[J]. Aeroengine, 2002(3):55-58 (in Chinese).
[3] TAYLOR J G. International performance of a hybrid axisymmetric/nonaxisymmetric convergent divergent nozzle:NASA TM-420[R]. Washington, D.C.:NASA, 1991.
[4] BERRIER B L, TAYLOR J G. International performance of two nozzles utilizing gimbal concepts for thrust vectoring:NASA TP-2991[R]. Washington, D.C.:NASA, 1990.
[5] 张靖周, 谢志荣, 郑礼宝. 球面收敛二元扩张矢量喷管热射流特征的实验研究[J]. 燃气涡轮实验与研究, 2004, 17(3):6-9. ZHANG J Z, XIE Z R, ZHENG L B. Experimental investigation on hot-jet characteristics of 2-D convergent-divergent vector nozzle[J]. Gas Turbine Experiment and Research, 2004, 17(3):6-9 (in Chinese).
[6] 王宏亮. 球面收敛二元喷管气动和红外辐射特性数值计算[D]. 南京:南京航空航天大学, 2007:24-29. WANG H L. Numerical Investigation on the aerodynamic and infrared radiation characteristics of spherical convergent flap nozzle[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2007:24-29 (in Chinese).
[7] 崔金辉, 尚守堂, 杨青真, 等. 射线追踪法在球面收敛调节片喷管RCS计算中的应用[J]. 航空动力学报, 2014, 29(11):2613-2620. CUI J H, SHANG S T, YANG Q Z, et al. Application of ray-tracing method in calculating RCS for spherical convergent flap nozzle[J]. Journal of Aerospace Power, 2014, 29(11):2613-2620 (in Chinese).
[8] 崔金辉, 杨青真, 陈立海, 等. 球面收敛调节片喷管RCS数值模拟研究[J]. 航空发动机, 2012, 38(2):46-50. CUI J H, YANG Q Z, CHEN L H, et al. Numerical simulation of RCS for spherical convergent flap nozzle[J]. Aeroengine, 2012, 38(2):46-50 (in Chinese).
[9] 陈立海, 杨青真, 陈玲玲, 等. 不同喷口修形的二元收敛喷管RCS数值模拟[J]. 航空动力学报, 2012, 27(3):513-520. CHEN L H, YANG Q Z, CHEN L L, et al. Numerical simulation of RCS for 2-D convergent nozzle with different trailing edges[J]. Journal of Aerospace Power, 2012, 27(3):513-520 (in Chinese).
[10] 杨胜男, 尚守堂, 邵万仁, 等. 球面收敛二元喷管电磁散射特性[J]. 航空动力学报, 2015, 30(12):2983-2991. YANG S N, SHANG S T, SHAO W R, et al. Electromagnetic scattering characteristics for spherical convergent flap nozzle[J]. Journal of Aerospace Power, 2015, 30(12):2983-2991 (in Chinese).
[11] 高翔, 施永强, 杨青真, 等. 介质涂覆位置对双S弯排气系统电磁散射特性影响研究[J]. 物理学报, 2015, 64(2):24103-1-24103-10. GAO X, SHI Y Q, YANG Q Z, et al. Electromagnetic scattering characteristics of double S-shaped exhaust nozzle with different coating medium parts[J]. Acta Physica Sinica, 2015, 64(2):24103-1-24103-10 (in Chinese).
[12] 王龙, 钟易成, 张堃元. 金属/介质涂覆的S形扩压器电磁散射特性[J]. 物理学报, 2012, 61(23):193-201. WANG L, ZHONG Y C, ZHANG K Y. Electromagnetic scattering study for metal/dielectric coated inlet diffuser[J]. Acta Physica Sinica, 2012, 61(23):193-201 (in Chinese).
[13] FEMANDO O, JOSE L, ROBERT J B. An iterative physical optics approached for analyzing the electromagnetic scattering by large open-ended cavities[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(4):356-361.
[14] ROBERT J B, TOMAS L. Forward-backward iterative physical optics algorithm for computing the RCS of open ended cavities[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(2):793-799.
[15] BERNARD J M L. Diffraction by metallic wedge covered with a dielectric material[J]. Wave Motion, 1987, 9(6):543-551.
[16] ROJAS R G, Al-HEKAIL Z. Generalized impedance/resistive boundary conditions for electromagnetic scattering problems[J]. Radio Science, 1989, 24(1):1-12.
[17] SENIOR T B A, VOLAKIS J L. Derivation and application of a class of generalized boundary conditions[J]. IEEE Transactions on Antennas and Propagation, 1989, 37(12):1566-1572.
[18] MARCEAUX O, STUPFEL B. High-order impedance boundary conditions for multilayer coated 3-D objects[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(3):429-436.
[19] 罗威, 高正平, 张怀武. 介质涂覆电大复杂腔体散射的快速求解[J]. 电波科学学报, 2008, 23(1):168-173. LUO W, GAO Z P, ZHANG H W. Fast calculation of scattering of dielectric coated electrically large complex cavities[J]. Chinese Journal of Radio Scinence, 2008, 23(1):168-173 (in Chinese).
[20] TADOKORO M, HONGO K. Measurement of RCS from a dielectric coated cylindrical cavity and calculation using IPO-EIBC[J]. IEICE Transactions on Electronics, 2002, 85(9):1692-1696.
/
〈 | 〉 |