飞机结冰致灾与防护专栏

水平表面气流剪切作用下的水膜厚度

  • 冷梦尧 ,
  • 常士楠 ,
  • 丁亮 ,
  • 李晓峰
展开
  • 北京航空航天大学 航空科学与工程学院, 北京 100083

收稿日期: 2016-08-23

  修回日期: 2016-10-25

  网络出版日期: 2016-10-27

基金资助

国家“973”计划(2015CB755803)

Thickness of water film driven by gas stream on horizontal plane

  • LENG Mengyao ,
  • CHANG Shinan ,
  • DING Liang ,
  • LI Xiaofeng
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China

Received date: 2016-08-23

  Revised date: 2016-10-25

  Online published: 2016-10-27

Supported by

National Basic Research Program of China (2015CB755803)

摘要

飞机结冰表面上的液态水受气流吹拂作用会发生向后溢流,从而影响结冰区域范围及防冰系统设计;为了获得水膜流动规律,对水平平板表面上气流剪切驱动的水膜流动进行了实验测量和建模分析。通过水膜流动风洞试验台产生高速气流驱动水膜的流动,使用色散共焦位移计测量同一位置的水膜在不同时刻的厚度变化,结果表明气-液界面由底层薄水膜和多种尺度的波动组成,具有变化速度快随机性强的特点。通过水膜厚度随气流速度及水膜雷诺数的变化规律,发现平均水膜厚度与两者均呈现出单调非线性的依赖关系。基于薄水膜流动理论和平均水膜厚度实验结果,提出了高速气流剪切作用下的气-液波动界面剪切因子计算式,适用于风速17.8~52.2 m/s,水膜雷诺数26~128之间的平板水膜流动计算。

本文引用格式

冷梦尧 , 常士楠 , 丁亮 , 李晓峰 . 水平表面气流剪切作用下的水膜厚度[J]. 航空学报, 2017 , 38(2) : 520696 -520704 . DOI: 10.7527/S1000-6893.2016.0275

Abstract

Liquid water on the surface of aircraft will run back under the effect of the airflow, resulting in redistribution of ice accretion and anti-icing heat flux. Experimental measurement and modeling analysis are conducted to investigate the flow behavior of shear-driven water film on the horizontal flat substrate. The water flow film is driven in a wind tunnel, and the instantaneous thickness is measured in the same location using a laser focus displacement meter based on confocal chromatic technique. It is found that the interface between the gas and liquid phases consists of underlying thin film and multiple scale fluctuations. The variation relationship of the film thickness between the wind speed and film Reynolds number is also obtained. Results show that the average film thickness depends monotonically on these two factors. Based on film flow model and experimental data, a new correlation for calculating the air shear stress above a thin film is proposed and validated by comparison with previous studies. The correlation can be applied for water film thickness calculation over a range of wind speed (17.8-52.2 m/s) and water film Reynolds number (26-128).

参考文献

[1] MESSINGER B L. Equilibrium temperature of an un-heated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1):29-42.
[2] AI-KHALIL K M, KEITH T G, DE-WITT K J. Development of an improved model for runback water on aircraft surfaces[J]. Journal of Aircraft, 1994, 31(2):271-278.
[3] MYERS T G. Extension to the Messinger model for aircraft icing[J]. AIAA Journal, 2001, 39(2):211-218.
[4] MYERS T G, THOMPSON C P. Modeling the flow of water on aircraft in icing conditions[J]. Journal of Aircraft, 1998, 36(6):1010-1013.
[5] ALZAILI J, HAMMOND D. Experimental investigation of thin water film stability and its characteristics in SLD icing problem[C]//SAE 2011 International Conference on Aircraft and Engine Icing and Ground Deicing. Chicago:SAE International, 2011.
[6] DU Y X, GUI Y W, XIAO C H, et al. Investigation on heat transfer characteristics of aircraft icing including runback water[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20):3702-3707.
[7] WRIGHT W B, STRUK P, BARTKUS T,et al. Recent advances in the LEWICE icing model[C]//SAE 2015 International Conference on Icing of Aircraft, Engines, and Structures. Prague:SAE International, 2015.
[8] HARIRECHE O, VERDIN P, THOMPSON C P, et al. Explicit finite volume modeling of aircraft anti-icing and de-icing[J]. Journal of Aircraft, 2008, 45(6):1924-1936.
[9] FORTIN G, LAFORTE J, ILINCA A. Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model[J]. International Journal of Thermal Sciences, 2006, 45(6):595-606.
[10] KAREV A R, FARZANEH M, LOZOWSKI E P. Character and stability of a wind-driven supercooled water film on an icing surface-I. Laminar heat transfer[J]. International Journal of Thermal Sciences, 2003, 42(5):481-498.
[11] UENO K, FARZANEH M. Linear stability analysis of ice growth under supercooled water film driven by a laminar airflow[J]. Physics of Fluids, 2011, 23(4):042103.
[12] WANG G K, ROTHMAYER A P. Thin water films driven by air shear stress through roughness[J]. Computers & Fluids, 2009, 38(2):235-246.
[13] WHITE E B, SCHMUCKER J A. A runback criterion for water drops in a turbulent accelerated boundary layer[J]. Journal of Fluids Engineering, 2008, 130(6):061302.
[14] 孟繁鑫, 朱光亚, 李荣嘉, 等. 加热表面水珠运动特性研究[J]. 航空学报, 2014, 35(5):1292-1301. MENG F X,ZHU G Y, LI R J, et al. Study of water drop motion characteristics on heating surface[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1292-1301(in Chinese).
[15] MOGHTADERNEJAD S, JADIDI M, NABIL E, et al. Shear driven rivulet dynamics on surfaces with various wettabilities[C]//ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal:American Society of Mechanical Engineers, 2014.
[16] FEO A, TSAO J. The water film weber number in glaze icing scaling[C]//2007 SAE Aircraft and Engine Icing International Conference. Seville:SAE International, 2007.
[17] MUZIK T, SAFARIK P, TUCEK A. Analysis of the water film behavior and its breakup on profile using experimental and numerical methods[J]. Journal of Thermal Science, 2014, 23(4):325-331.
[18] ZHANG K, WEI T, HU H. An experimental investigation on the surface water transport process over an airfoil by using a digital image projection technique[J]. Experiments in Fluids, 2015, 56(9):173.
[19] CHEREMISINOFF N P, DAVIS E J. Stratified turbulent-turbulent gas-liquid flow[J]. AIChE Journal, 1979, 25(1):48-56.
[20] ANDRITSOS N, HANRATTY T J. Influence of interfacial waves in stratified gas-liquid flows[J]. AIChE Journal, 1987, 33(3):444-454.
[21] PARAS S V, VLACHOS N A, KARABELAS A J. Liquid layer characteristics in stratified-Atomization flow[J]. International Journal of Multiphase Flow, 1994, 20(5):939-956.
[22] TZOTZI C, ANDRITSOS N. Interfacial shear stress in wavy stratified gas-liquid flow in horizontal pipes[J]. International Journal of Multiphase Flow, 2013, 54(3):43-54.
[23] SETYAWAN A, INDARTO, DEENDARLIANTO. The effect of the fluid properties on the wave velocity and wave frequency of gas-liquid annular two-phase flow in a horizontal pipe[J]. Experimental Thermal and Fluid Science, 2016, 71(4):25-41.
[24] ISHII M, GROLMES M A. Inception criteria for droplet entrainment in two-phase concurrent film flow[J]. AIChE Journal, 1975, 21(2):308-318.
[25] 吴望一. 流体力学(下册)[M]. 北京:北京大学出版社, 2004:370-386. WU W Y. Fluiddynamic (Part 2)[M]. Beijing:Peking University Press, 2004:370-386(in Chinese).
[26] KOSKY P G, STAUB F W. Local condensing heat transfer coefficients in the annular flow regime[J]. AIChE Journal, 1971, 17(5):1037-1043.
[27] HUGHMARK G A. Film thickness, entrainment, and pressure drop in upward annular and dispersed flow[J]. AIChE Journal, 1973, 19(5):1062-1065.
[28] ASALI J C, HANRATTY T T, ANDREUSSI P. Interfacial drag and film height for vertical annular flow[J]. AIChE Journal, 1985, 31(6):895-902.

文章导航

/