固体力学与飞行器总体设计

外吹式襟翼动力增升效果评估方法

  • 张声伟 ,
  • 王伟
展开
  • 中航工业第一飞机研究院, 西安 710089

收稿日期: 2016-08-19

  修回日期: 2016-10-10

  网络出版日期: 2016-10-24

Method for evaluating powered high-lift effects of externally blown flap

  • ZHANG Shengwei ,
  • WANG Wei
Expand
  • The First Aircraft Institute of AVIC, Xi'an 710089, China

Received date: 2016-08-19

  Revised date: 2016-10-10

  Online published: 2016-10-24

摘要

外吹式动力增升襟翼可以有效地缩短运输类飞机的起降距离,其增升效果评估方法是运输机动力增升设计的关键技术之一。本文采用基准气动力耦合速度修正方法,发展了一套适用于外吹式襟翼动力增升效果快速评估的计算方法;该方法充分考虑了动力增升飞机性能计算对气动力数据的需求,解决了传统推力系数法的小速度大推力系数求解限制问题、无法准确求解离地速度以及多速度点气动力求解引起的计算效率问题。以某运输机为例,分析了其气动力及起飞性能,对其外吹式襟翼动力增升效果进行了评估,验证了方法的正确性。研究表明:通过优化动力增升襟翼偏转角,起飞滑跑距离最大减小量可达到25%;过大的襟翼偏转角将显著地增加飞机阻力,不利于缩短起飞滑跑距离。研究工作对运输机的外吹式动力增升襟翼设计,具有一定的工程指导价值。

本文引用格式

张声伟 , 王伟 . 外吹式襟翼动力增升效果评估方法[J]. 航空学报, 2017 , 38(6) : 220689 -220689 . DOI: 10.7527/S1000-6893.2016.0272

Abstract

Externally blown flaps are usually adopted to shorten the takeoff and land distance of transport aircrafts, and the method for evaluating the powered high-lift effect of the externally blown flap is one of the most important techniques in the design of transport aircrafts. A method for rapidly evaluating the powered high-lift effect of the externally blown flap is developed by coupling basic aerodynamics with the velocity correction technique. The proposed method takes into consideration the requirements for aerodynamic data in the performance computation of powered high-lift aircrafts, and can overcome disadvantages of classical trust coefficient method, such as low speed, limits of large thrust coefficient computation, low precision in solving unstick speed, and inefficiency of solving the problem of aerodynamic loading at multi-velocity point. The aerodynamic and takeoff performance of a transport aircraft are analyzed and the powered high-lift effects of the externally blown flaps are evaluated to validate the proposed method. The results show that the takeoff running distance can be shortened by 25% by deflecting the flaps rationally. However, with too large deflection angle of powered high-lift flaps, the aircraft drag will increase dramatically to go against shortening the takeoff running distance. The research results would provide some guidance for the design of externally blown flaps.

参考文献

[1] PARLETT L P, SHIVERS J P. Wind-tunnel investigation of a large jet transport model equipped with an external-flow jet flap: AIAA-1968-4928[R]. Reston: AIAA, 1968.
[2] PARLETT L P, SHIVERS J P. Wind-tunnel investigation of an STOL aircraft configuration equipped with an external-flow jet flap: AIAA-1969-5364[R]. Reston: AIAA, 1969.
[3] PARLETT L P, FREEMAN D C. Wind-tunnel investigation of a jet transport airplane configuration with high thrust-weight ratio and an external-flow jet flap: AIAA-1970-6058[R]. Reston: AIAA, 1970.
[4] AOYAGI K, FALARSKI M D, KOENIG D G. Wind-tunnel investigation of a large scale 25 deg swept-wing jet transport model with an external blowing tripple-slotted flap: AIAA-1973-62197[R]. Reston: AIAA, 1973.
[5] BARBERIE F J, WICK A T, HOOKER J R. Low speed powered lift testing of a transonic cruise efficient STOL military transport: AIAA-2013-1099[R]. Reston: AIAA, 2013.
[6] WICK A T, HOOKER J R, BARBERIE F J. Powered lift CFD predictions of a transonic cruising STOL military transport: AIAA-2013-1098[R]. Reston: AIAA, 2013.
[7] MARCOS J, MARSHALL D D. Computational and experimental comparison of a powered lift, upper surface blowing configuration: AIAA-2010-0502[R]. Reston: AIAA, 2010.
[8] ENGLAR R J, CAMPBELL B A. Pneumatic channel wing power-lift advanced super-STOL aircraft: AIAA-2002-3275[R]. Reston: AIAA, 2002.
[9] 白俊强, 张晓亮, 刘楠. 考虑动力影响的大型运输机增升构型气动特性研究[J]. 空气动力学学报, 2014, 32(4): 2-5. BAI J Q, ZHANG X L, LIU N. The research of aerodynamic characteristics of high-lift configuration of large transport plane with the effect of engine jet[J]. Acta Aerodynamica Sinica, 2014, 32(4): 2-5 (in Chinese).
[10] 郭少杰, 王豪杰, 李杰. 外吹式襟翼动力增升数值模拟方法研究[J]. 航空工程进展, 2010, 1(1): 3-5. GUO S J, WANG H J, LI J. Numerical simulating method for powered high-lift flow[J]. Advances in Aeronautical Science and Engineering, 2010, 1(1):3-5 (in Chinese).
[11] 李少飞, 李杰, 刘正宾. 外吹式襟翼动力增升绕流数值分析[J]. 航空计算技术, 2008, 38(5): 2-4. LI S F, LI J, LIU Z B. Numerical simulation of externally blown flap with powered high-lift flow[J]. Aeronautical Computing Technique, 2008, 38(5): 2-4 (in Chinese).
[12] 刘李涛, 杨永, 李喜乐. 外吹式动力吹气襟翼N-S方程数值分析[J]. 航空计算技术, 2008, 38(3): 2-6. LIU L T, YANG Y, LI X L. Numerical analysis of high-lift system with externally blown flap using N-S equations[J]. Aeronautical Computing Technique, 2008, 38(3): 2-6 (in Chinese).
[13] SMITH C C. Effect of engine position and high-lift devices on aerodynamic characteristics of an external-flow jet-flap STOL model: AIAA-1971-6222[R]. Reston: AIAA, 1971.
[14] SMITH C C. Effect of wing aspect ratio and flap span on aerodynamic characteristics of an externally blown jet-flap STOL model: AIAA-1973-7205[R]. Reston: AIAA, 1973.
[15] JONES P K, BURGIN K. Conversion of lift coefficient increment due to flaps from full span to part span: ESDU-1974-74012[R]. London: ESDU, 1974.
[16] BONENFANT D, CARTER E C. Lift-curve slope and aerodynamic centre position of wings in inviscid subsonic flow: ESDU-1974-70011[R]. London: ESDU, 1974.
[17] WEIR J, FLOWER J W. Aircraft forces due to interference between a jet efflux and a slotted flap: ESDU-1982-82034[R]. London: ESDU, 1982.
[18] BOBBITT P J. Analysis of the takeoff and landing of powered lift aircraft: AIAA-2007-1273[R]. Reston: AIAA, 2007.
[19] BOBBITT P J, MARGASON R. Analysis of the take-off and landing of power-lift aircraft: AIAA-2007-1256[R]. Reston: AIAA, 2007.
[20] NORTON B. STOL Progenitors: The technology path to a large STOL aircraft and the C-17A: AIAA-2002-1369[R]. Reston: AIAA, 2002.

文章导航

/