自激励式电磁铆接放电电流分析
收稿日期: 2016-08-09
修回日期: 2016-09-05
网络出版日期: 2016-10-24
基金资助
国家自然科学基金(50905032);福建省教育厅省高校自然基金青年重点项目(JZ160417)
Discharge current in self-excited electromagnetic riveting
Received date: 2016-08-09
Revised date: 2016-09-05
Online published: 2016-10-24
Supported by
National Natural Science Foundation of China (50905032);Key Project of Provincial University Natural Foundation for Young Scholar of Fujian Provincial Department of Education (JZ160417)
电磁铆接是一种将电磁能转化为机械能的铆接工艺。传统感应式低电压电磁铆接存在能量利用率低、难以解决高强度大直径铆钉和难成形材料铆钉的铆接等问题。基于自激励式电磁铆接技术,建立放电电流分析模型,通过数值分析与工艺试验探讨自激励式电磁铆接进行大直径铆钉成形的可行性。研究结果表明建立的电磁铆接放电电流分析模型可实现传统感应式和自激励式电磁铆接放电电流分析,分析结果与试验吻合较好;放电能量相同时,自激励式电磁铆接的涡流斥力峰值要远大于感应式的涡流斥力,能有效提高能量利用率,是实现大直径铆钉成形的有效方式;在放电电压为320 V时,自激励式电磁铆接可实现直径为10 mm的45号钢铆钉的成形,其变形以绝热剪切的方式进行。
邓将华 , 程溧 , 王林峰 . 自激励式电磁铆接放电电流分析[J]. 航空学报, 2017 , 38(5) : 420669 -420669 . DOI: 10.7527/S1000-6893.2016.0271
Electromagnetic riveting is a riveting technology for transforming electromagnetic energy into mechanical energy. By traditional induction low voltage electromagnetic riveting, it is difficult to solve the problems of low energy efficiency, and riveting of high strength and large diameter rivet and hard forming material rivet. Based on self-excited electromagnetic riveting technology, the analysis model of discharge current is established. The feasibility of large diameter rivet forming is investigated by numerical analysis and process experiment. The results show that the model for discharge current analysis can realize the discharge current analysis of traditional induction and self-excited electromagnetic riveting. The analysis results are in good agreement with those of the experiment. When the discharge energy is the same, the eddy current repulsion peak of the self-excited electromagnetic riveting is much larger than that of the induction. The self-excited electromagnetic riveting can effectively improve the energy utilization rate, and is the effective way for the forming of large diameter rivets. When the discharge voltage is 320 V, self-excited electromagnetic riveting can deform the 45 steel rivet with 10 mm diameter, and the rivet deformation is carried out by adiabatic shearing.
[1] 王云渤, 张关康, 冯宗律. 飞机装配工艺学[M]. 北京:国防工业出版社, 1990:1-5. WANG Y B, ZHANG G K, FENG Z L. Aircraft assembly technology[M]. Beijing:National Defense Industry Press, 1990:1-5 (in Chinese).
[2] 曹增强. 电磁铆接技术在大飞机制造中的应用初探[J]. 航空学报, 2008, 29(3):716-720. CAO Z Q. Exploration of electromagnetic riveting application in large aircraft manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):716-720 (in Chinese).
[3] 许国康, 高明辉, 肖庆东, 等. 电磁铆接技术的发展、设备研制及应用探讨[J]. 航空制造技术, 2010(23):38-41. XU G K, GAO M H, XIAO Q D, et al. Development, equipment research and application of electromagnetic riveting[J]. Aeronautical Manufacturing Technology, 2010(23):38-41 (in Chinese).
[4] 于海平, 李春峰, 张铁力, 等. 大直径高强度铆钉电磁铆接技术[C]//第十一届全国塑性工程学术年会论文集. 北京:中国机械工程学会塑性工程分会, 2009:481-484. YU H P, LI C F, ZHANG T L, et al. Electromagnetic riveting technology of large diameter rivet with high strength[C]//The 11th National Plastic Engineering Academic Annual Meeting. Beijing:Chinese Institute of Mechanical Engineering Plastic Engineering Branch, 2009:481-484 (in Chinese).
[5] ZIEVE P B, HARTMANN J. High force density eddy current driven actuator[J]. IEEE Transactions on Magnetics, 1988, 24(6):3144-3146.
[6] ZIEVE P B. Low voltage electromagnetic riveter[D]. Seattle:University of Washington, 1986:1-23.
[7] CAO Z Q, CARDEW-HALL M. Interference fit riveting technique in fiber composite laminates[J]. Aerospace Science and Technology, 2006, 10(4):327-330.
[8] DENG J H, TANG C, FU M W. Effect of discharge voltage on the deformation of Ti Grade 1 rivet in electromagnetic riveting[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2014, 591(2):26-32.
[9] REINHAL P G, GHASSAEI S, CHOO V. An analysis of rivet die design in electromagnetic riveting[J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1988, 110(1):65-69.
[10] CHOO V, REINHAL P G, GHASSAEI S. Effect of high rate deformation induced precipitation hardening on the failure aluminum rivets[J]. Journal of Materials Science, 1989, 24(2):599-608.
[11] REPETTO E A, RADOVITZKY R, ORTIZ M. A finite element study of electromagnetic riveting[J]. Journal of Manufacturing Science and Engineering, 1999, 121(1):61-68.
[12] 曹增强. 铆接技术发展状况[J]. 航空维修与工程, 2000(6):41-42. CAO Z Q. The development of riveting technology[J]. Aviation Maintenance & Engineering, 2000(6):41-42 (in Chinese).
[13] DENG J H, YU H P, LI C F. Numerical and experimental investigation of electromagnetic riveting[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2009, 499(1-2):242-247.
[14] 王武坤. 手提式电磁铆枪优化设计[D]. 西安:西北工业大学, 2010:38-47. WANG W K. Handheld electromagnetic riveter optimization design[D]. Xi'an:Northwestern Polytechnical University, 2010:38-47 (in Chinese).
[15] 李奕寰, 曹增强, 张岐良, 等. 铆模倾角对铆接质量的影响研究[J]. 航空学报, 2013, 34(2):426-433. LI Y H, CAO Z Q, ZHANG Q L,et al. Effect study on riveting quality with different angles of riveting die[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2):426-433 (in Chinese).
[16] 邓将华, 郑义明, 唐超, 等. 低压电磁铆接放电电流分析[J]. 塑性工程学报, 2013, 20(1):108-112. DENG J H, ZHENG Y M, TANG C, et al. Analysis of discharge current in low voltage electromagnetic riveting[J]. Journal of Plasticity Engineering, 2013, 20(1):108-112 (in Chinese).
[17] 邓将华, 李春峰, 于海平, 等. 电磁铆接各参数对线圈放电电流的影响[J]. 锻压技术, 2010, 35(5):56-59. DENG J H, LI C F, YU H P, et al. Effect of different parameters on coil discharge current in electromagnetic riveting[J]. Forging & Stamping Technology, 2010, 35(5):56-59 (in Chinese).
[18] ZHANG X, YU H P, LI J, et al. Microstructure investigation and mechanical property analysis in electromagnetic riveting[J]. The International Journal of Advanced Manufacturing Technology, 2015, 78(1-4):613-623.
[19] ZHANG X, YU H P, SU H, et al. Experimental evaluation on mechanical properties of a riveted structure with electromagnetic riveting[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9-12):2071-2082.
[20] ZHANG X, YU H P, LI C F. Microstructure and mechanical properties of 2A10 aluminum alloy bar subjected to dynamic heading[J]. Journal of Materials Processing Technology, 2016, 227(1):259-267.
[21] 雷银照. 轴对称线圈磁场计算[M]. 北京:中国计量出版社, 1991:195-229. LEI Y Z. Calculation of axisymmetric coil magnetic field[M]. Beijing:China Metrology Publishing House, 1991:195-229 (in Chinese).
[22] 娄杰. 新型电磁机构的拓扑设计与优化方法研究[D]. 济南:山东大学, 2009:11-16. LOU J. Research on topology design and optimization of the novel type electromagnetic mechanisms[D]. Jinan:Shandong University, 2009:11-16 (in Chinese).
[23] 《职业技能培训MES系列教材》编委会. 铆装钳工技能[M]. 北京:航空工业出版社, 2008:35-40. 《Occupation Skill Training of MES Series Textbooks》 Editorial Board. Operation technical ability of riveting and benchwork[M]. Beijing:Aviation Industry Press, 2008:35-40 (in Chinese).
[24] 国防科学技术工业委员会. QJ 782A-2005 铆接通用技术要求[S]. 北京:中国标准出版社, 2005:1-11. National Defense Science and Technology Industry Committee. QJ 782A-2005 General technical requirements for riveting[S]. Beijing:Standards Press of China, 2005:1-11 (in Chinese).
/
〈 | 〉 |