材料工程与机械制造

面向飞机装配的机器人定位误差和残差补偿

  • 何晓煦 ,
  • 田威 ,
  • 曾远帆 ,
  • 廖文和 ,
  • 向勇
展开
  • 南京航空航天大学 机电学院, 南京 210016

收稿日期: 2016-06-17

  修回日期: 2016-08-12

  网络出版日期: 2016-10-19

基金资助

国家自然科学基金(51475225,51575273);国家高档数控机床与基础制造装备(2014ZX04001071)

Robot positioning error and residual error compensation for aircraft assembly

  • HE Xiaoxu ,
  • TIAN Wei ,
  • ZENG Yuanfan ,
  • LIAO Wenhe ,
  • XIANG Yong
Expand
  • College of Mechanical and Electronical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2016-06-17

  Revised date: 2016-08-12

  Online published: 2016-10-19

Supported by

National Natural Science Foundation of China (51475225,51575273); National High-grade CNC Machine Tools and Basic Manufacturing Equipment (2014ZX04001071)

摘要

工业机器人由于其高柔性和低成本而被越来越多地应用到飞机自动钻铆系统中,使用精度补偿有效地提高机器人的绝对定位精度是保证产品质量的关键,为进一步提高机器人末端定位精度,提出了基于误差相似度的残差补偿方法。首先使用基于运动学参数标定的方法辨识出机器人的几何参数误差,再利用基于误差相似度的方法对残余误差进行估计,实现对机器人的误差和残差的补偿。以工业机器人KUKA KR-30 HA为对象所进行的试验验证表明,机器人的绝对定位精度平均值由补偿前的0.879 mm经过定位误差补偿后提高到0.194 mm,经过残差补偿后进一步提高到0.141 mm,经过定位误差和残差补偿后的机器人最大误差由1.492 mm降低为0.296 mm,最大绝对定位精度误差降低了80.16%。该方法能有效地补偿参数辨识后遗留的残差,进一步提高机器人的定位精度。

本文引用格式

何晓煦 , 田威 , 曾远帆 , 廖文和 , 向勇 . 面向飞机装配的机器人定位误差和残差补偿[J]. 航空学报, 2017 , 38(4) : 420538 -420538 . DOI: 10.7527/S1000-6893.2016.0235

Abstract

Nowadays, industrial robots have been increasingly applied to aircraft automatic drilling and riveting system due to their high flexibility and low cost. The key to product quality assurance is compensating the absolute positional errors of the robot effectively. In order to further improve end location accuracy of the robot, a method of compensation for residual error based on error similarity is proposed. The geometric parameters of the robot are first identified based on kinematics parameter calibration. The residual error is then compensated based on error similarity. An experiment on the KUKA KR-30 HA industrial robot is conducted to demonstrate the effectiveness of the compensation. The result shows that the average absolute positioning accuracy of the robot can be improved from 0.879 mm to 0.194 mm after compensation of the positioning error. The average absolute positioning accuracy is further increased to 0.141 mm after a residual compensation. The maximum absolute positioning error is reduced by 80.16% from 1.492 mm to 0.296 mm. This method can compensate the residual errors left over after parameter identification effectively.

参考文献

[1] DEVLIEG R, SITTON K, FEIKERT E, et al. ONCE (ONe-sided Cell End effector) robotic drilling system:SAE Technical Paper-2002-01-2626[R]. New York:SAE International, 2002.
[2] TIAN W, ZHOU Z, LIAO W. Analysis and investigation of a rivet feeding tube in an aircraft automatic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(5-8):973-983.
[3] ZHAN Q, WANG X. Hand-eye calibration and positioning for a robot drilling system[J]. The International Journal of Advanced Manufacturing Technology, 2012, 61(5-8):691-701.
[4] 彭商贤, 方浩天, 张平. 装配机器人高精度定位补偿系统[J]. 机器人, 1992, 14(3):11-16, 23. PENG S X, FANG H T, ZHANG P. High precision system with positioning compensation for assembly robot[J]. Robot, 1992, 14(3):11-16, 23 (in Chinese).
[5] VEITSCHEGGER W K, WU C H. Robot calibration and compensation[J]. IEEE Journal on Robotics and Automation, 1988, 4(6):643-656.
[6] ZAK G, BENHABIB B, FENTON R G, et al. Application of the weighted least squares parameter estimation method to the robot calibration[J]. Journal of Mechanical Design, 1994, 116(3):890-893.
[7] PARK I W, LEE B J, CHO S H, et al. Laser-based kinematic calibration of robot manipulator using differential kinematics[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6):1059-1067.
[8] DENNIS J E, SCHNABEL R B. Numerical methods for unconstrained optimization and nonlinear equations[M]. New Jersey:Prentice-Hall, 1983:64-65.
[9] JUDD R P, KNASINSKI A B. A technique to calibrate industrial robots with experimental verification[J]. IEEE Transactions on Robotics and Automation, 1990, 6(1):20-30.
[10] RENDERS J M, ROSSIGNOL E, BECQUET M, et al. Kinematic calibration and geometrical parameter identification for robots[J]. IEEE Transactions on Robotics and Automation, 1991, 7(6):721-732.
[11] ELATTA A Y, GEN L P, ZHI F L, et al. An overview of robot calibration[J]. Information Technology Journal, 2004, 3(1):74-78.
[12] ZHONG X, LEWIS J, N-NAGY F L. Inverse robot calibration using artificial neural networks[J]. Engineering Applications of Artificial Intelligence, 1996, 9(1):83-93.
[13] ZHUANG H, ROTH Z S, HAMANO F. Optimal design of robot accuracy compensators[J]. IEEE Transactions on Robotics and Automation, 1993, 9(6):854-857.
[14] ZHUANG H, ROTH Z S. Method for kinematic calibration of Stewart platforms[J]. Journal of Robotic Systems, 1993, 10(3):391-405.
[15] ZENG Y F, TIAN W, LI D W, et al. An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9-12):1-11.
[16] ZENG Y F, TIAN W, LIAO W H. Positional error similarity analysis for error compensation of industrial robots[J]. Robotics and Computer-Integrated Manufacturing, 2016, 42:113-120.
[17] 王东署, 付志强. 机器人逆标定方法研究[J]. 计算机应用, 2007, 27(1):71-73. WANG D S, FU Z Q. Study on robot inverse calibration[J]. Computer Applications, 2007, 27(1):71-73 (in Chinese).
[18] NGUYEN H N, ZHOU J, KANG H J. A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network[J]. Neurocomputing, 2015, 151(3):996-1005.
[19] GINANI L S, MOTTA J M S T. Theoretical and practical aspects of robot calibration with experimental verification[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2011, 33(1):15-21.
[20] LIN P D, TSAI J. The machining and on-line measurement of spatial cams on four-axis machine tools[J]. International Journal of Machine Tools and Manufacture, 1996, 36(1):89-101.
[21] BARKER L K. Modified Denavit-Hartenberg parameters for better location of joint axis systems in robot arms:NASA-TP-2585[R]. Washington, D.C.:NASA, 1986.
[22] VEITSCHEGGER W, WU C H. Robot accuracy analysis based on kinematics[J]. IEEE Journal on Robotics and Automation, 1986, 2(3):171-179.
[23] ZAK G, BENHABIB B, FENTON R G, et al. Application of the weighted least squares parameter estimation method to the robot calibration[J]. Journal of Mechanical Design, 1994, 116(3):890-893.

文章导航

/