胚胎电子细胞阵列中空闲细胞的配置
收稿日期: 2016-03-28
修回日期: 2016-10-08
网络出版日期: 2016-10-12
基金资助
国家自然科学基金(61271153,61372039)
Configuration of idle cells in embryonics electronic cell array
Received date: 2016-03-28
Revised date: 2016-10-08
Online published: 2016-10-12
Supported by
National Natural Science Foundation of China (61271153, 61372039)
空闲细胞是胚胎电子细胞阵列(EECA)实现自修复的前提,空闲细胞越多,系统的可靠性越高,但过多的空闲细胞也将带来巨大的硬件资源消耗。在航空航天等领域,电子系统追求高可靠性的同时,硬件资源消耗也必须考虑,为优化胚胎电子细胞阵列中空闲细胞的配置,以阵列可靠性和硬件资源消耗为出发点,将多态系统理论引入到阵列的可靠性分析中,优化可靠性计算模型。针对经典胚胎电子细胞阵列,在不同自修复策略下,仿真并分析阵列的可靠性、硬件资源消耗与空闲细胞配置的关系。根据研究结果制定了不同自修复方式下空闲细胞的配置方法,同时兼顾可靠性和硬件资源消耗的要求。同时,研究了确定规模的胚胎电子细胞阵列自修复方式的选择方法。本文研究成果对推动胚胎电子细胞阵列的实际应用具有重要的意义。
王涛 , 蔡金燕 , 孟亚峰 , 刘晓攀 , 潘刚 . 胚胎电子细胞阵列中空闲细胞的配置[J]. 航空学报, 2017 , 38(4) : 320266 -320266 . DOI: 10.7527/S1000-6893.2016.0267
Idle cells are the premise of self-repair in embryonics electronic cell array (EECA), more idle cells mean more chances for self-repair, and thus higher reliability of the system. However, more idle cells also bring huge consumption of hardware resources. In the field of aerospace, in the pursuit of high reliability of electronic systems, hardware resource consumption must be also taken into consideration. In order to optimize the configuration of idle cells in EECA, the reliability and the hardware resources consumption of EECA are analyzed as the starting point, and multi-state system theory is introduced into the reliability analysis of EECA to optimize the reliability calculation model. For the classical EECA, under different self-repair strategies, the relationship between the reliability and the hardware resources consumption of EECA with the configuration of idle cells are simulated and analyzed. Based on the research simulation results, the configuration method of idle cells with different self-repair strategies is formulated, which can give consideration to both requirements of higher reliability and lower hardware resources consumption of EECA. The method for selecting the self-repair strategy for the EECA with known scale is also studied. The simulation and analysis results show that the proposed methods can have great influence on application of the EECA.
[1] ZHANG J B, CAI J Y, MENG Y F, et al. Fault self-repair strategy based on evolvable hardware and reparation balance technology[J]. Chinese Journal of Aeronautics, 2014, 27(5):1211-1222.
[2] 张砦, 王友仁. 基于可靠性优化的芯片自愈型硬件细胞阵列布局方法[J]. 航空学报, 2014, 35(12):3392-3402. ZHANG Z, WANG Y R. Method to reliability improving of chip self-healing hardware by array layout reformation[J]. Acta Aeronautica et Astronautica Sinica, 2014,35(12):3392-3402 (in Chinese).
[3] WANG N T, QIAN Y L, LI Y, et al. Survey on evolvable hardware and embryonic hardware[C]//2013 IEEE 11th International Conference on Electronic Measurement and Instruments. Piscataway, NJ:IEEE Press, 2013:1021-1026.
[4] ORTEGA C, TYRRELL A M. Biologically inspired reconfigurable hardware for dependable applications[C]//IEE Half-day Colloquium on Hardware Systems for Dependable Applications. London:IET, 1997:1-4.
[5] MANGE D, SANCHEZ E, STAUFFER A, et al. Embryonics:A new methodology for designing field-programmable gate arrays with self-repair and self-replication properties[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 1998, 6(3):387-399.
[6] CANHAM R O, TYRREL A M. Hardware artificial immune system and embryonic array for fault tolerant systems[J]. Genetic Programming and Evolvable Machines, 2003, 4(4):359-382.
[7] 姚睿, 王友仁, 于盛林. 胚胎型仿生硬件及其关键技术研究[J]. 河南科技大学学报, 2005, 26(3):33-36. YAO R, WANG Y R, YU S L. Research on embryonic system and its key technologies[J]. Journal of Henan University of Science and Technology, 2005, 26(3):33-36 (in Chinese).
[8] 荣昊亮, 俞承芳. 基于胚胎电子细胞阵列可容错系统的FPGA验证[J]. 复旦学报, 2006, 45(1):127-130. RONG H L, YU C F. FPGA validation based on embryonic arrays fault-tolerant system[J]. Journal of Fudan University, 2006, 45(1):127-130 (in Chinese).
[9] TYRRELL A M, SUN H. A honeycomb development architecture for robust fault-tolerant design[C]//1st NASA/ESA Conference on Adaptive Hardware and Systems. Piscataway, NJ:IEEE Press, 2006:7-13.
[10] XU J Q, DOU Y, LV Q, et al. Etissue:A bio-inspired match-based reconfigurable hardware architecture supporting hierarchical self-healing and self-evolution[C]//2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). Piscataway, NJ:IEEE Press, 2011:311-318.
[11] SAMIE M, DRAGFFY G, POPESCU A. Prokaryotic bio-inspired model for embryonics[C]//Proceedings of the 4th NASA/ESA Conference on Adaptive Hardware and Systems. Piscataway, NJ:IEEE Press, 2009:163-170.
[12] 王南天. 基于原核仿生阵列的自修复技术研究[D]. 长沙:国防科学技术大学, 2011. WANG N T. Research of self-healing technique based on prokaryotic bio-inspired array[D]. Changsha:National University of Defense Technology, 2011 (in Chinese).
[13] 李廷鹏. 基于总线结构的仿生自修复技术研究[D]. 长沙:国防科学技术大学, 2012. LI T P. Research on bio-inspired self-repair technology based on bus structure[D]. Changsha:National University of Defense Technology, 2012 (in Chinese).
[14] 朱赛. 仿生电子系统移除-进化自修复方法研究[D]. 石家庄:军械工程学院, 2015. ZHU S. Research on elimination-evolution self-repair method of bio-inspired electronic system[D]. Shijiazhuang:Ordnance Engineering College, 2015 (in Chinese).
[15] ZHANG Z, WANG Y R. Method to self-repair reconfiguration strategy selection of embryonic cellular array on reliability analysis[C]//2014 NASA/ESA Conference on Adaptive Hardware and Systems. Piscataway, NJ:IEEE Press, 2014:225-232.
[16] 张砦, 王友仁. 基于可靠性分析的胚胎硬件容错策略选择方法[J]. 系统工程理论与实践, 2013, 33(1):236-242. ZHANG Z, WANG Y R. Guidelines to fault-tolerant strategy selection in embryonics hardware based on reliability analysis[J]. Systems Engineering-Theory & Practice, 2013, 33(1):236-242 (in Chinese).
[17] WANG N T, QIAN Y L,LI Y, et al. Design method for a multi-layer bio-inspired self-healing hardware[C]//2014 Prognostics and System Health Management Conference. Piscataway, NJ:IEEE Press, 2014:653-657.
[18] 王敏, 张砦, 王友仁. 三维可重构阵列互连资源在线分布式容错方法[J]. 计算机应用研究, 2013, 30(8):2360-2363. WANG M, ZHANG Z,WANG Y R. Interconnection resources online distributed fault-tolerant method for three dimensional reconfigurable array[J]. Application Research of Computers, 2013, 30(8):2360-2363 (in Chinese).
[19] 林勇, 罗文坚, 钱海, 等. n×n阵列胚胎电子系统应用中的优化设计问题分析[J]. 中国科学技术大学学报, 2007, 37(2):171-176. LIN Y, LUO W J, QIAN H, et al. Analysis of optimization design in n×n array embryonic system applications[J]. Journal of University of Science and Technology of China, 2007, 37(2):171-176 (in Chinese).
[20] TEMPESTI G, MANGE D, STAUFFER A, et al. The BioWall:An electronic tissue for prototyping bio-inspired systems[C]//Proceedings 2002 NASA/DoD Conference on Evolvable Hardware. Piscataway, NJ:IEEE Press, 2002:221-230.
[21] STAUFFER A, MANGE D, TEMPESTI G. Self-repair and self-healing electronic watch:The BioWatch[C]//Proceeding of 4th International Conference on Evolvable Systems:From Biology to Hardware, Tokyo, 2001:112-127.
[22] TYRRELL A M, SANCHEZ E. POEtic tissue:An integrated architecture for bio-inspired hardware[C]//Pro-ceeding of the 5th International Conference on Evolvable Systems:From Biology to Hardware (ICES 2003), Trondheim, 2003:129-140.
[23] UPEGUI A, THOMA Y, SATIZABAL H F, et al. Ubichip, Ubidule, and MarXbot:A hardware platform for the simulation of complex systems[C]//9th International Conference on Evolvable Systems:From Biology to Hardware. Berlin:Springer, 2010:286-298.
[24] MANGE D, SANCHEZ E, STAUFFER A. Embryonics:A new methodology for designing field-programmable gate arrays with self-repair and self-replicating properties[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 1998, 6(3):387-399.
[25] 王南天, 钱彦岭, 李岳, 等. 胚胎型在线自修复FIR滤波器研究[J]. 仪器仪表学报, 2012, 33(6):1385-1391. WANG N T, QIAN Y L, LI Y,et al. Study of embryonic type on-line self-healing FIR filters[J]. Chinese Journal of Scientific Instrument, 2012, 33(6):1385-1391 (in Chinese).
[26] 周贵峰, 钱彦岭, 王南天, 等. 胚胎型仿生硬件结构FIR滤波器设计与仿真[J]. 电子测量与仪器学报, 2010, 24(增刊):61-65. ZHOU G F, QIAN Y L,WANG N T, et al. Design and simulation of FIR filters based on embryonic bio-inspired hardware architecture[J].Journal of Electronic Measurement and Instrument, 2010, 24(Supplement):61-65 (in Chinese).
[27] XU G L, XIA Z H, WANG H B, et al. Design of embryo-electronic systems capable of self-diagnosing and self-healing and configuration control[J]. Chinese Journal of Aeronautics, 2009, 22(5):637-643.
[28] 李春洋. 基于多态系统理论的可靠性分析与优化设计方法研究[D]. 长沙:国防科学技术大学, 2010. LI C Y. Research on reliability analysis and optimization based on the multi-state system theory[D]. Changsha:National University of Defense Technology, 2010 (in Chinese).
[29] LISNIANSKI A, LEVITIN G. Multi-state system reliability:Assessment, optimization and applications[M]. Singapore:World Scientific, 2003.
[30] LISNIANSKI A, FRENKEL I, DING Y. Multi-state system reliability analysis and optimization for engineers and industrial managers[M]. London:Springer, 2010.
[31] ORTEGA-SANCHEZ C, MANGE D, SMITH S, et al. Embryonics:A bio-inspired cellular architecture with fault-tolerant properties[J]. Genetic Programming and Evolvable Machines, 2000, 1(3):187-215.
/
〈 | 〉 |