多自由度非高斯随机振动控制
收稿日期: 2016-05-20
修回日期: 2016-09-07
网络出版日期: 2016-10-09
Multi-degree-of-freedom non-Gaussian random vibration control
Received date: 2016-05-20
Revised date: 2016-09-07
Online published: 2016-10-09
在振动试验台上进行多自由度(MDOF)随机振动激励时,传统的控制方法生成的驱动信号及试验台的响应信号都是高斯信号。但真实的振动干扰信号多是超高斯的;而相比于高斯激励,亚高斯激励可降低驱动信号的最大幅值。为实现多自由度亚高斯和超高斯振动控制,提出一种多自由度非高斯随机振动控制方法,该方法采用系统辨识解决系统耦合问题,而后通过选择特殊的相位生成非高斯伪随机驱动信号,再经过时域随机化得到真随机非高斯驱动信号。基于Hexapod平台的多自由度微振动试验台的亚高斯和超高斯实验表明,在试验台的响应功率谱(PSD)满足工程中常用的±3 dB精度的同时,亚高斯驱动信号的最大幅值相比于高斯驱动信号的最大幅值降低了20%以上;超高斯响应信号的峭度与参考峭度的误差在0.2之内。实验结果验证了所提方法的有效性。
孟韩 , 黄海 , 黄舟 . 多自由度非高斯随机振动控制[J]. 航空学报, 2017 , 38(2) : 220458 -220465 . DOI: 10.7527/S1000-6893.2016.0253
The drive signal and the response signal generated by traditional multi-degree-of-freedom (MDOF) random vibration control method are both Gaussian signal. However, the real vibration interference signal is always super-Gaussian, while sub-Gaussian random excitation is mainly used to reduce the maximum amplitude of the drive signal. To achieve MDOF sub-Gaussian and super-Gaussian vibration control, an MDOF non-Gaussian random vibration control method is proposed, which solve the coupling problem through system identification, and select special phase to generate non-Gaussian pseudo-random drive signal, and then the pseudo-random drive signal is transformed to real random non-Gaussian drive signal through time domain randomization. The sub-Gaussian and super-Gaussian experiments based on a Hexapod-based MDOF micro vibration test bed show that the response power spectral density (PSD) of response signals obtained by the proposed method are limited to ±3 dB error band of reference PSD. Compared to that in the Gaussian experiment, the drive signal in the sub-Gaussian experiment decreases by more than 20%. In the super-Gaussian experiment, the error between the kurtosis of response signal and the reference value is within 0.2. Effectiveness of the proposed method can be validated by the experiment results.
[1] 陈章位, 于慧君. 振动控制技术现状与进展[J]. 振动与冲击, 2009, 28(3):73-77. CHEN Z W, YU H J. Existing state and development of vibration control technology[J]. Journal of Vibration and Shock, 2009, 28(3):73-77(in Chinese).
[2] CONNON I W. Comments on kurtosis of military vehicle vibration data[J]. Journal of the IES, 1991, 34(6):38-41.
[3] 李锦华, 李春祥, 申建红. 非高斯脉动风压的模拟研究[J]. 振动与冲击, 2009, 28(9):5-8. LI J H, LI C X, SHEN J H. Simulation of non-Guassian fluctuating wind pressure[J]. Journal of Vibration and Shock, 2009, 28(9):5-8(in Chinese).
[4] XU F, LI C R, JIANG T M. On the shaker simulation of wind-induced non-Gaussian random vibration[J]. Shock and Vibration, 2016, 2016(6):1-10.
[5] 蒋培, 张春华, 陈循, 等. 超高斯随机振动环境的疲劳强化机理[J]. 国防科技大学学报, 2004, 28(3):99-102. JIANG P, ZHANG C H, CHEN X, et al. Fatigue enhancement mechanism of the super-Gaussian random vibration environment[J]. Journal of National University of Defense Technology, 2004, 28(3):99-102(in Chinese).
[6] VAN BAREN J, VAN BAREN P, JENISON M I. The third dimension of random vibration control:2007.01.2270[R]. Warrendale, PA:SAE International, 2007.
[7] STEINWOLF A. Shaker random testing with low kurtosis:Review of the methods and application for sigma limiting[J]. Shock and Vibration, 2010, 17(3):219-231.
[8] WINTERSTEIN S R. Nonlinear vibration models for extremes and fatigue[J]. Journal of Engineering Mechanics, 1988, 114(10):1772-1790.
[9] SMALLWOOD D O. Generation of stationary non-Gaussian time histories with a specified cross-spectral density[J]. Shock and Vibration, 1997, 4(5-6):361-377.
[10] SMALLWOOD D O. Generating non-Gaussian vibration for testing purposes[J]. Sound and Vibration, 2005, 39(10):18-23.
[11] HSUEH K D, HAMERNIK R P. A generalized approach to random noise synthesis:Theory and computer simulation[J]. The Journal of the Acoustical Society of America, 1990, 87(3):1207-1217.
[12] STEINWOLF A. Approximation and simulation of probability distributions with a variable kurtosis value[J]. Computational Statistics & Data Analysis, 1996, 21(2):163-180.
[13] STEINWOLF A. Shaker random testing with low kurtosis:Review of the methods and application for sigma limiting[J]. Shock and Vibration, 2010, 17(3):219-231.
[14] STEINWOLF A. Vibration testing by non-Gaussian random excitations with specified kurtosis. Part II:Numerical and experimental results[J]. Journal of Testing and Evaluation, 2014, 42(3):672-686.
[15] 蒋瑜, 陶俊勇, 王得志, 等. 一种新的非高斯随机振动数值模拟方法[J]. 振动与冲击, 2012, 31(19):169-173. JIANG Y, TAO J Y, WANG D Z, et al. A novel approach for the numerical simulation of non-Gaussian random vibration[J]. Journal of Vibration and Shock, 2012, 31(19):169-173(in Chinese).
[16] 陈家焱, 陈章位, 周建川, 等. 基于泊松过程的超高斯随机振动试验控制技术研究[J]. 振动与冲击, 2012, 31(6):19-22. CHEN J Y, CHEN Z W, ZHOU J C, et al. Super-Gaussian random vibration test control technique based on Poisson process[J]. Journal of Vibration and Shock, 2012, 31(6):19-22(in Chinese).
[17] 陈怀海, 王鹏宇, 孙建勇. 基于逆系统方法的多输入多输出非高斯驱动信号生成[J]. 航空学报, 2016, 37(5):1544-1551. CHEN H H, WANG P Y, SUN J Y. Generating multi-input multi-output non-Gaussian driving signal based on inverse system method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1544-1551(in Chinese).
[18] Department of Defense. Test method standard for environmental engineering considerations and laboratory test:MIL-STD-810G (w/CHANGE-1)[S]. Washington, D.C.:Department of Defense, 2014.
[19] SMALLWOOD D O. Multiple shaker random vibration control-An update[R]. Albuquerque, NM:Sandia National Labs, 1999.
[20] 蒋瑜, 陈循, 陶俊勇. 基于时域随机化的超高斯真随机驱动信号生成技术研究[J]. 振动工程学报, 2005, 18(4):491-494. JIANG Y, CHEN X, TAO J Y. Study on the generation of super-Gaussian and true-random drive signals using time domain randomization[J]. Journal of Vibration Engineering, 2005, 18(4):491-494(in Chinese).
[21] 黄海, 王海强, 李伟鹏, 等. 一种六自由度振动激励系统:CN104865034A[P]. 2015-08-26. HUANG H, WANG H Q, LI W P, et al. A six degree of freedom vibration excitation system:CN104865034A[P]. 2015-08-26(in Chinese).
/
〈 | 〉 |