电子电气工程与控制

航天器姿控系统的PD型学习观测器故障重构

  • 张科 ,
  • 韩治国 ,
  • 郭小红 ,
  • 吕梅柏
展开
  • 1. 西北工业大学 航天学院, 西安 710072;
    2. 西北工业大学 航天飞行动力学技术重点实验室, 西安 710072;
    3. 西安卫星测控中心, 西安 710043

收稿日期: 2016-07-20

  修回日期: 2016-09-21

  网络出版日期: 2016-10-08

基金资助

国家自然科学基金(61502391);航天支撑基金(N2015KC0121)

PD-type learning observer based fault reconstruction for spacecraft attitude control systems

  • ZHANG Ke ,
  • HAN Zhiguo ,
  • GUO Xiaohong ,
  • LYU Meibo
Expand
  • 1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an 710072, China;
    3. China Xi'an Satellite Control Center, Xi'an 710043, China

Received date: 2016-07-20

  Revised date: 2016-09-21

  Online published: 2016-10-08

Supported by

National Natural Science Foundation of China (61502391);China Space Foundation (N2015KC0121)

摘要

针对满足Lipschitz条件的航天器姿态控制系统这一非线性系统中存在的执行器加性故障、空间干扰与测量噪声问题,提出了基于PD型迭代学习观测器的故障重构方法。该方法具有期望的鲁棒性能指标,能够在系统存在空间干扰与测量噪声情况下实现对突变故障与时变故障等故障类型的精确重构。基于线性矩阵不等式技术给出系统化PD型迭代学习观测器的设计方法,并根据Lyapunov稳定性理论对上述设计方法的稳定性条件进行了理论证明,同时利用鲁棒技术抑制空间干扰与测量噪声对执行器故障重构的影响,通过线性矩阵不等式工具箱求解观测器参数矩阵。最后,将该方法应用到航天器姿态控制系统中,仿真结果证明了该方法的有效性。

本文引用格式

张科 , 韩治国 , 郭小红 , 吕梅柏 . 航天器姿控系统的PD型学习观测器故障重构[J]. 航空学报, 2017 , 38(6) : 320629 -320629 . DOI: 10.7527/S1000-6893.2016.0259

Abstract

A fault reconstruction method based on PD-type iterative learning observer is proposed to deal with actuator additive faults, space external disturbances and measurement noises existing in the nonlinear systems such as spacecraft attitude control systems, which satisfy Lipschitz conditions. The method has the desired robust performance index, and can achieve accurate reconstruction of abrupt faults, time-varying faults, etc. in the presence of space external disturbances and measurement noises. The designed method of PD-type iterative learning observer is given based on linear matrix inequality technique, and the stability condition of the method is proved according to the Lyapunov stability theory. The influence of space external disturbances and measurement noises on actuator additive faults reconstruction is suppressed using robust technology and also linear matrix inequality toolkit solving observer parameter matrix. The method is applied to spacecraft attitude control system. Simulation results show the effectiveness of the proposed method.

参考文献

[1] NGUANG S K, SHI P, DING S. Fault detection filter for uncertain fuzzy systems: An LMI approach[J]. IFAC Proceedings volumes, 2005, 38(1): 227-232.
[2] ZHANG Z, JAIMOUKHA I M. On-line fault detection and isolation for linear discrete-time uncertain systems[J]. Automatica, 2014, 50(2): 513-518.
[3] FENG J, WANG S, ZHAO Q. Closed-loop design of fault detection for networked non-linear systems with mixed delays and packet losses[J]. IET Control Theory and Applications, 2013, 7(6): 858-868.
[4] ZHANG J, SWAIN A K, NGUANG S K. Robust H adaptive descriptor observer design for fault estimation of uncertain nonlinear systems[J]. Journal of the Franklin Institute, 2014, 351(11): 5162-5181.
[5] 陶洪峰, 邹伟, 杨慧中. 执行器故障多率采样间歇过程的鲁棒耗散迭代学习容错控制[J]. 控制理论与应用, 2012, 33(3): 329-335. TAO H F, ZOU W, YANG H Z. Robust dissipative iterative learning fault-tolerant control for multi-rate sampling batch process with actuator failure[J]. Control Theory and Applications, 2012, 33(3): 329-335 (in Chinese).
[6] CHEN W, SAIF M. An iterative learning observer-based approach to fault detection and accommodation in nonlinear systems[C]//Proceedings of the 40th IEEE Conference on Decision and Control. Piscataway, NJ: IEEE Press, 2001: 24-26.
[7] CHEN W, ER M J. Simulations identification of time-varying parameters and estimation of system states using iterative learning observers[J]. International Journal of Systems Science, 2007, 38(1): 39-45.
[8] WU Q, SAIF M. Repetitive learning observer based actuator fault detection, isolation, and estimation with application to a satellite attitude control system[C]//Proceedings of the 2007 American Control Conference. Piscataway, NJ: IEEE Press, 2007: 414-419.
[9] 管宇, 张迎春, 沈毅, 等. 基于迭代学习观测器的卫星姿态控制系统的鲁棒容错控制[J]. 宇航学报, 2012, 33(8): 1080-1086. GUAN Y, ZHANG Y C, SHEN Y, et al. Fault-tolerant control for satellite attitude control system based on iterative learning observer[J]. Journal of Astronautics, 2012, 33(8): 1080-1086 (in Chinese).
[10] 贾庆贤. 基于学习观测器的卫星姿态控制系统故障重构研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 55-65. JIA Q X. Research on learning observer-based fault reconstruction for satellite attitude control system[D]. Harbin: Harbin Institute of Technology, 2015: 55-65 (in Chinese).
[11] 贾庆贤, 张迎春, 沈毅, 等. 基于迭代学习-未知输入观测器的卫星姿控系统鲁棒故障重构[J]. 系统工程与电子技术, 2012, 34(1): 120-124. JIA Q X, ZHANG Y C, SHEN Y, et al. Robust fault reconstruction method for satellite attitude control system based on iterative learning-unknown input observer[J]. Systems Engineering and Electronics, 2012, 34(1): 120-124 (in Chinese).
[12] JIA Q X, CHEN W, ZHANG Y C, et al. Fault reconstruction and fault-tolerant control via learning observer in Takagi-Sugeno fuzzy descriptor systems with time delays[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3885-3895.
[13] GAO Z F, JIANG B, SHI P, et al. Sensor fault estimation and compensation for microsatellite attitude control system[J]. International Journal of Control, Automation, and Systems, 2010, 8(2): 228-237.
[14] ZHANG J, SWAIN A K, NGUANG S K. Robust sensor fault estimation scheme for satellite attitude control systems[J]. Journal of the Franklin Institute, 2013, 350(9): 2581-2604.
[15] SOBHANI-TEHRANI E, KHORASANI K. Fault diagnosis of nonlinear systems using a hybrid approach[M]. Berlin: Springer, 2009: 19-117.
[16] 俞立. 鲁棒控制——线性矩阵不等式处理方法[M]. 北京: 清华大学出版社, 2002: 6-29. YU L. Robust control-linear matrix inequality method[M]. Beijing: Tsinghua University Press, 2002: 6-29 (in Chinese).
[17] LIU C, YANG H, CHEN W, et al. A novel design of iterative learning observer for fault estimation[C]//2011 ASME/IEEE International Conferences on Mechatronic and Embedded Systems and Applications. Washington, D.C.: ASME, 2011: 435-439.
[18] JIA Q X, CHEN W, ZHANG Y C, et al. Robust fault reconstruction via learning observers in linear parameter-varying systems subject to loss of actuator effectiveness[J]. IET Control Theory and Applications, 2014, 8(1): 42-50.
[19] XU J X, PANDA S K, LEE T H. Real-time iterative learning control[M]. Berlin: Springer, 2009: 7-26.
[20] TAN C P. Sliding mode observer for fault detection and isolation[D]. Leicester: University of Leicester, 2002: 35-142.
[21] EDWARDS C, YAN X G, SPURGEON S K. On the solvability of the constrained Lyapunov problem[J]. IEEE Transactions on Automatic Control, 2007, 52(10): 1982-1987.
[22] 贾庆贤, 张迎春, 陈雪芹, 等. 卫星姿态控制系统故障重构观测器设计[J]. 宇航学报, 2016, 37(4): 442-450. JIA Q X, ZHANG Y C, CHEN X Q, et al. Observer design for fault reconstruction in satellite attitude control system[J]. Journal of Astronautics, 2016, 37(4): 442-450 (in Chinese).
[23] 张迎春, 贾庆贤, 李化义, 等. 基于比例积分观测器的卫星姿控系统鲁棒故障重构[J]. 系统工程与电子技术, 2014, 36(9): 1810-1818. ZHANG Y C, JIA Q X, LI H Y, et al. Robust fault reconstruction design for satellite attitude control systems based on proportional integral observer[J]. Systems Engineering and Electronics, 2014, 36(9): 1810-1818 (in Chinese).

文章导航

/