流体力学与飞行力学

基于非定常面元/黏性涡粒子法的低雷诺数滑流气动干扰

  • 王红波 ,
  • 祝小平 ,
  • 周洲 ,
  • 许晓平
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 西北工业大学 无人机特种技术重点实验室, 西安 710065

收稿日期: 2016-05-09

  修回日期: 2016-09-06

  网络出版日期: 2016-09-08

基金资助

国家“863”计划(2014AA7052002);民机专项(MIZ-2015-F-009);陕西省科技统筹项目(2015KTCQ01-78)

Aerodynamic interactions at low Reynolds number slipstream with unsteady panel/viscous vortex particle method

  • WANG Hongbo ,
  • ZHU Xiaoping ,
  • ZHOU Zhou ,
  • XU Xiaoping
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi'an 710065, China

Received date: 2016-05-09

  Revised date: 2016-09-06

  Online published: 2016-09-08

Supported by

National High-tech Research and Development Program of China (2014AA7052002); Civil Aircraft Specific Project (MIZ-2015-F-009); Shaanxi Province Science and Technology Co-ordination Project (2015KTCQ01-78)

摘要

针对太阳能无人机螺旋桨滑流与机翼的气动干扰,考虑了低雷诺数流动下气体黏性和压缩性影响,并根据黎曼边界条件和涡量等效原则建立了能够快速计算分析螺旋桨-机翼气动干扰的非定常面元/黏性涡粒子的混合方法。首先使用有试验数据的风洞模型以及数值模拟技术对混合方法进行验证,在此基础上研究了不同安装位置与工况下螺旋桨与机翼的气动干扰。结果表明:螺旋桨对轴向气流的加速以及滑流诱导的上洗和下洗效应使机翼气动力呈现出增升增阻的现象,机翼升阻比有所下降。较大的弦向间距以及较高的垂直安装位置在减缓机翼升阻比下降的同时也使得螺旋桨拉力有所减小。对于多个螺旋桨的气动干扰,不同的桨叶旋转方向导致机翼气动力不同的变化规律,当旋转方向与机翼翼尖涡反向时,螺旋桨滑流能够抑制翼尖涡的强度,提高机翼气动效率。

本文引用格式

王红波 , 祝小平 , 周洲 , 许晓平 . 基于非定常面元/黏性涡粒子法的低雷诺数滑流气动干扰[J]. 航空学报, 2017 , 38(4) : 120412 -120412 . DOI: 10.7527/S1000-6893.2016.0251

Abstract

An unsteady panel/viscous vortex particle hybrid method, with the consideration of air viscous and compressibility effects at low Reynold number, is developed base on equivalent vorticity principle and Neumann boundary condition to rapidly calculate the aerodynamic interaction between the wing and the propeller of the solar-powered airplane. Experimental data are compared with computation method to validate the hybrid method proposed. The aerodynamic interactions between the propeller and the wing are investigated at different installation positions and working conditions. Calculated results indicate that the distribution of the spanwise and the chordwise pressure are apparently changed by the increased axial velocity and upwash and downwash effects induced by the propeller slipstream to lead to a decrease of lift-tot-drag ratio. A larger chordwise distance and a higher vertical installation position can reduce propeller thrusts, and can also decelerate lift-to-drag ratio of the wing. For the case of multi propeller interactions, different rotation directions cause different aerodynamic characteristics of the wing. When the propeller rotation direction is opposite to the wing tip vortex direction, the propeller slipstreams can counteract vortex strengths at the wing tip to induce an augment of lift-to-drag ratio of the wing.

参考文献

[1] NOLL T E, ISHMAEL S D, HENWOOD B, et al. Technical findings, lessons learned, and recommendations resulting from the helios prototype vehicle mishap:NASA-20070022260[R]. Washington, D.C.:National Aeronautics and Space Admin Langley Research Center, 2007.
[2] WINDTE J, SCHOLZ U, RADESPIEL R. Validation of the RANS-simulations of laminar separation bubbles on airfoils[J]. Aerospace Science and Technology, 2006, 10(6):484-494.
[3] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京:北京航空航天大学出版社, 2006:55-82. LIU P Q. Air propeller theory and application[M]. Beijing:Beihang University Press, 2006:55-82 (in Chinese).
[4] 段中喆, 刘沛清, 屈秋林. 修正的动力盘模型与三维模拟螺旋桨滑流比较[J].北京航空航天大学学报, 2013, 39(5):585-589. DUAN Z Z, LIU P Q, QU Q L. Slipstream characters comparison of improved actuator disk model and 3D propeller numerical simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5):585-589 (in Chinese).
[5] 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11):2910-2920. XU J K,BAI J Q,HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2910-2920 (in Chinese).
[6] NICOLAS T, CHRISTIAN B, NIKOLAUS A A. Numerical and experimental analysis of a generic fan-in-wing configuration[J]. Journal of Aircraft, 2009, 46(2):656-666.
[7] TSUNG L L, PAN K C. Application of the sliding mesh technique for helicopter rotor flow simulation[J]. Journal of Aeronautics, Astronautics and Aviation, 2012, 44(3):201-210.
[8] 王红波, 祝小平, 周洲, 等. 太阳能无人机螺旋桨滑流气动特性分析[J]. 西北工业大学学报, 2015, 33(6):913-920. WANG H B, ZHU X P, ZHOU Z, et al. Aerodyanmic investigation on propeller slipstream flows for solar powered airplanes[J]. Journal of Northwestern Polytechnical University, 2015, 33(6):913-920 (in Chinese).
[9] 徐华舫. 亚、超音速常位流的面元法[M]. 北京:国防工业出版社, 1981:159-190. XU H F. Panel methods of subsonic and supersonic flows[M]. Beijing:National Defense Industry Press, 1981:159-190 (in Chinese).
[10] KATZ J, PLOTKIN A. Low speed aerodynamics[M]. Cambridge:Cambridge University Press, 2000:207-217.
[11] WILLIS D J, JAIME P, JACOB K W. A combined pFFT-multipole tree code, unsteady panel method with vortex particle wakes[J]. International Journal for Numerical Methods in Fluids, 2007, 53(8):1399-1422.
[12] 李凤蔚.空气与气体动力学引论[M]. 西安:西北工业大学出版社, 2007:253-256. LI F W. Air and gas dynamic theory[M]. Xi'an:Northwestern Polytechnical University Press, 2007:253-256 (in Chinese).
[13] 魏鹏. 旋翼非定常流场的黏性涡数值模拟方法及其混合方法的研究[D]. 南京:南京航空航天大学, 2012:11-28. WEI P. Research on viscous vortex numerical algorithm and its hybrid method for rotor unsteady flowfield[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:11-28 (in Chinese).
[14] CHORIN A J. Numerical study of slightly viscous flow[J]. Journal of Fluid Mechanics, 1973, 57(4):785-796.
[15] HE C J, ZHAO J G. Modeling rotor wake dynamics with viscous vortex particle method[J]. AIAA Journal, 2009, 47(4):902-915.
[16] ELDREDGE J D, LEONARD A, COLONIUS T. A general deterministic treatment of derivatives in particle methods[J]. Journal of Computational Physics, 2002, 180(2):686-709.
[17] JOIN L H. Calculation of potential flow about arbitrary three dimensional lifting bodies:AD755840[R]. California:McDonnell Douglas Corporation, 1972.
[18] CALABRETTA J. A three dimensional vortex particle-panel code for modeling propeller-airframe interaction[D]. California:California Polytechnic State University, 2010:134-139.
[19] MCGHEE R J, WALKER B S, MILLARD B F. Experimental results for the eppler 387 airfoil at low Reynolds numbers in the langley low-turbulence pressure tunnel:NASA TM 4062[R]. Washington, D.C.:NASA Langley Research Center, 1988.
[20] CARADONNA F X, TUNG C. Experimental and analytical studies of a model helicopter rotor in hover:NASA TM-81232[R]. Washington, D.C.:NASA, 1981.
[21] BRAND A G, MCMAHON H M, KOMERATH N M. Surface pressure measurements on a body subject to vortex wake interaction[J]. AIAA Journal, 1989, 27(5):569-574.
[22] VELDHUIS L M. Propeller wing aerodynamic interference[D]. Delft:Delft University of Technology, 2005:187-191.

文章导航

/