电子电气工程与控制

相关色噪声下无冗余累积量稀疏表示DOA估计

  • 刘庆华 ,
  • 周秀清 ,
  • 晋良念
展开
  • 桂林电子科技大学, 广西信息科学实验中心, 桂林 541004

收稿日期: 2016-04-19

  修回日期: 2016-07-13

  网络出版日期: 2016-09-05

基金资助

国家自然科学基金(61461012,61371186);广西无线宽带通信与信号处理重点实验室基金(GXKL06160110);广西物联网技术及产业化推进协同创新中心资助项目(WLW20060205);桂林电子科技大学研究生教育创新计划(2016YJCX87)

DOA estimation using non-redundant cumulants sparse representation in correlated colored noise

  • LIU Qinghua ,
  • ZHOU Xiuqing ,
  • JIN Liangnian
Expand
  • Guangxi Experiment Center of Information Science, Guilin University of Electronic Technology, Guilin 541004, China

Received date: 2016-04-19

  Revised date: 2016-07-13

  Online published: 2016-09-05

Supported by

National Natural Science Foundation of China (61461012, 61371186); Guangxi Key Laboratory of Wire-less Wideband Communication & Signal Processing (GXKL06160110); Center for Collaborative Innovation in the Technology of IOT and the Industrialization (WLW20060205); Innovation Project of GUET Graduate Education (2016YJCX87)

摘要

针对传统均匀线阵中四阶累积量计算复杂度大、对快拍数敏感的问题,提出了一种快速去冗余的高分辨波达方向估计新方法。该方法首先通过构造选择矩阵对四阶累积量矩阵进行第1次降维处理,摒弃传统四阶累积量中大量冗余数据,然后对无冗余累积量矩阵进行矢量化并通过二次降维得到统计性能更优的向量观测模型,最后在相应的过完备基下建立观测模型的稀疏表示进行波达方向(Direction of Arrival,DOA)估计。同时将方法推广到L型阵列2维DOA估计,扩展了其应用范围。与传统的四阶累积量方法相比,该方法大大地减小了计算量,对快拍数要求不高,并且能够有效地抑制相关色噪声。理论分析和仿真实验验证了该方法对1维和2维DOA估计都具有较高的估计精度和分辨率。

本文引用格式

刘庆华 , 周秀清 , 晋良念 . 相关色噪声下无冗余累积量稀疏表示DOA估计[J]. 航空学报, 2017 , 38(4) : 320331 -320331 . DOI: 10.7527/S1000-6893.2016.0247

Abstract

This paper aims at the problem that conventional fourth-order cumulants have high computational complexity and are sensitive to data samples. A new direction of arrival (DOA) estimation method is proposed to eliminate the redundancy quickly. The massive redundant data are removed by selection matrix to reduce the dimension of fourth-order cumulants matrix. By vectorizing the non-redundant cumulants matrix and reducing the dimension again, the vector measurement model with better statistical performance is then obtained. The sparse representation of the measurement model corresponding to the related over-complete basis is constructed for DOA estimation. Then the method is extended to L array for two dimensional DOA estimation. Compared with conventional fourth-order cumulants methods, the proposed method can greatly reduce the computational complexity and the impact of the size of data samples, and can efficiently suppress correlated colored noise. Theoretical analysis and simulation experiments verify that the proposed method has higher resolution and better estimation accuracy for one and two dimensional DOA estimation.

参考文献

[1] NAGESHA V, KAY S. Maximum likelihood estimation for array processing in colored noise[J]. IEEE Transactions on Signal Processing, 1996, 44(2):169-180.
[2] LI M, LU Y, HE B. Array signal processing for maximum likelihood Direction-of-Arrival estimation[J]. Journal of Electrical & Electronic Systems, 2013, 3(1):117.
[3] ZACHARIAH D, JANSSON M, BENGTSSON M. Utilization of noise-only samples in array processing with prior knowledge[J]. IEEE Signal Processing Letters, 2013, 20(9):865-868.
[4] WERNER K, JANSSON M. Optimal utilization of signal-free samples for array processing in unknown colored noise fields[J]. IEEE Transactions on Signal Processing, 2006, 54(10):3861-3872.
[5] PRASAD S, WILLIAMS R T, MAHALANABIS A K, et al. A transform-based covariance differencing approach for some classes of parameter estimation problems[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1988, 36(5):631-641.
[6] YAN G, NING L, CHANG T, et al. Covariance differencing technique based DOA estimation method under hermitian symmetric Toeplitz noise[C]//Proceedings of IEEE Conference on Wireless Communications & Signal Processing. Piscataway:IEEE, 2012:1-5.
[7] DOGAN M C, MENDEL J M. Applications of cumulants to array processing. I. aperture extension and array calibration[J]. IEEE Transactions on Signal Processing, 1995, 43(5):1200-1216.
[8] SHAN Z L, JI F, WEI G. Extention music-like algorithm for DOA estimation with more sources than sensors[C]//Proceedings of IEEE Conference on Neural Networks & Signal Processing. Piscataway:IEEE, 2003:1281-1284.
[9] JING X R, SUI W W, ZHOU W. DOA estimation of coherent signals based on fourth-order cumulant and temporal smoothing[J]. Systems Engineering and Electronics, 2012, 34(4):789-794.
[10] LIAO B, CHAN S C. A cumulant-based approach for direction finding in the presence of mutual coupling[J]. Signal Processing, 2014, 104(12):197-202.
[11] SHI H P, LENG W, WANG A G, et al. Fast orthonormal propagator direction-finding algorithm based on fourth-order cumulants[J]. Applied Computational Electromagnetics Society Journal, 2015, 30(6):638-644.
[12] TIAN Y, XU H. Extended-aperture DOA estimation with unknown number of sources[J]. Electronics Letters, 2015, 51(7):583-584.
[13] 窦道祥, 李茂, 何子述. 基于稀疏重建的MIMO-OTH雷达多模杂波抑制算法[J]. 航空学报, 2015, 36(7):2310-2318. DOU D X, LI M, HE Z S. Multi-mode clutter suppression algorithm of MIMO-OTH radar based on sparse reconstruction[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2310-2318 (in Chinese).
[14] HE Z Q, LIU Q H, JIN L N, et al. Low complexity method for DOA estimation using array covariance matrix sparse representation[J]. Electronics Letters, 2013, 49(3):228-230.
[15] LI S, JIANG X, HE W, et al. Direction of arrival estimation via sparse representation of fourth order statistics[C]//Proceedings of IEEE Conference on Signal Processing, Communication and Computing (ICSPCC). Pisca-taway:IEEE, 2013:1-4.
[16] LIU Q H, OUYANG S, JIN L N. Two-dimensional DOA estimation with L-shaped array based on a jointly sparse representation[J]. Information Technology Journal, 2013, 12(10):2037.
[17] LIU Z. DOA and polarization estimation via signal reconstruction with linear polarization-sensitive arrays[J]. Chinese Journal of Aeronautics, 2015, 28(6):1718-1724.
[18] QIAN C, HUANG L, XIAO Y H, et al. Localization of coherent signals without source number knowledge in unknown spatially correlated Gaussian noise[J]. Signal Processing, 2015, 111(6):170-178.
[19] ZENG W J, LI X L, ZHANG X D. Direction-of-arrival estimation based on the joint diagonalization structure of multiple fourth-order cumulant matrices[J]. IEEE Signal Processing Letters, 2009, 16(3):164-167.
[20] MA W K, HSIEH T H, CHI C Y. DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance:A Khatri-Rao subspace approach[J]. IEEE Transactions on Signal Processing, 2010, 58(4):2168-2180.
[21] TIBSHIRANI R. Regression shrinkage and selection via the LASSO[J]. Journal of the Royal Statistical Society, 1996, 58(1):267-288.
[22] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[23] HANSEN P C, O'LEARY D P. The use of the L-curve in the regularization of discrete ill-posed problems[J]. SIAM Journal on Scientific Computing, 1993, 14(6):1487-1503.
[24] 罗争, 吴林, 邵璐璐. 一种稀疏表示的二维DOA降维估计新算法[J]. 中国电子科学研究院学报, 2013, 8(5):501-506. LUO Z, WU L, SHAO L L. A novel two-dimensional direction-of-arrival degradation estimation based on sparse signal representation[J]. Journal of CAEIT, 2013, 8(5):501-506 (in Chinese).

文章导航

/