固体力学与飞行器总体设计

基于对数正态分布的多部位疲劳结构的疲劳寿命预测方法

  • 谭秀峰 ,
  • 谢里阳 ,
  • 马洪义 ,
  • 张娜 ,
  • 罗义建
展开
  • 1. 东北大学 机械工程与自动化学院, 沈阳 110819;
    2. 中国第一汽车股份有限公司 技术中心 汽车振动噪声与安全控制综合技术国家重点实验室, 长春 130011

收稿日期: 2016-04-27

  修回日期: 2016-07-11

  网络出版日期: 2016-08-15

基金资助

国家自然科学基金(51335003);辽宁重大装备制造协同创新中心资助项目

Fatigue life prediction method for multi-site fatigue structure with lognormal fatigue life

  • TAN Xiufeng ,
  • XIE Liyang ,
  • MA Hongyi ,
  • ZHANG Na ,
  • LUO Yijian
Expand
  • 1. College of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
    2. State Key Laboratory of Vehicle NVH and Safety Technology, R & D Center, China FAW Ltd. Co., Changchun 130011, China

Received date: 2016-04-27

  Revised date: 2016-07-11

  Online published: 2016-08-15

Supported by

National Natural Science Foundation of China (51335003); Project supported by the Collaborative Innovation Center of Major Machine Manufacturing in Liaoning Province

摘要

以实现多部位疲劳结构的寿命预测为目的,基于概率累积损伤法则,推导了基于寿命服从对数正态分布的概率疲劳寿命预测方法。根据损伤临界值与应力水平无关这一前提条件,将损伤临界值由传统确定性的值1转换为随机变量,累积损伤由确定性的中值损伤计算,建立了“中值累积损伤-概率损伤临界值”干涉模型。当对数寿命标准差恒定时,对比了所提出模型和基于Monte Carlo仿真的Miner累积损伤方法的寿命预测结果,验证了模型的准确性以及其方便快捷的优点;当对数寿命标准差变化时,损伤临界值由满足损伤等效的应力基准决定,此时亦可得到高精度的偏于安全的寿命预测结果。

本文引用格式

谭秀峰 , 谢里阳 , 马洪义 , 张娜 , 罗义建 . 基于对数正态分布的多部位疲劳结构的疲劳寿命预测方法[J]. 航空学报, 2017 , 38(2) : 220376 -220382 . DOI: 10.7527/S1000-6893.2016.0210

Abstract

To predict the fatigue life of multi-site fatigue structure, a probabilistic fatigue life prediction method based on the probabilistic accumulated damage rule is proposed, considering that fatigue life obeys lognormal distribution. According to the precondition that the damage critical value is independent of stress level, the damage critical value is transformed from the traditionally deterministic value 1 into a random variable, and the accumulated damage is calculated by the median S-N curve. An accumulated damage-probabilistic damage critical value interference model is thus built. When logarithmic fatigue life standard deviation is constant, life prediction result of the proposed interference model is compared with that of the Miner accumulated damage model based on Monte Carlo simulation. The comparison result verifies accuracy and efficiency of the proposed model. When logarithmic fatigue life standard deviation is varied, the damage critical value is decided by damage equivalent stress, and a high-precision and safer life prediction result can be gained.

参考文献

[1] NI K, MAHADEVAN S. Strain-based probabilistic fatigue life prediction of spot-welded joints[J]. International Journal of Fatigue, 2004, 26(7):763-772.
[2] HE Z, HAN T L, XIE M. A two-dimensional probability model for evaluating reliability of piezoelectric micro-actuators[J]. International Journal of Fatigue, 2007, 29(2):245-253.
[3] MURTY A S R, GUPTA U C, RADHA A. A new approach to fatigue strength distribution for fatigue reliability evaluation[J]. International Journal of Fatigue, 1995, 17(2):85-89.
[4] CHEN D. A new approach to the estimation of fatigue reliability at a single stress level[J]. Reliability Engineering and System Safety, 1991, 33(1):101-113.
[5] 谢里阳, 王正. 随机恒幅循环载荷疲劳可靠度异量纲干涉模型[J]. 机械工程学报, 2008, 44(1):1-6. XIE L Y, WANG Z. Dissimilar-dimension interference model of fatigue reliability under uncertain cyclic load[J]. Chinese Journal of Mechanical Engineering, 2008, 44(1):1-6(in Chinese).
[6] 王正, 康锐, 谢里阳. 以载荷作用次数为寿命指标的失效相关系统可靠性建模[J]. 机械工程学报, 2010, 46(6):188-194. WANG Z, KANG R, XIE L Y. Reliability modeling of systems with dependent failure when the life measured by the number of loadings[J]. Chinese Journal of Mechanical Engineering, 2010, 46(6):188-194(in Chinese).
[7] LV S Z, LIU H N, ZHANG D W, et al. Reliability calculation model of gears considering strength degradation[C]//16th IEEE International Conference on Industrial Engineering and Engineering Management. Piscataway, NJ:IEEE Press, 2009:1200-1203.
[8] LIN J, ZHANG J, YANG S, et al. Reliability analysis of aero-engine blades considering nonlinear strength degeneration[J]. Chinese Journal of Aeronautics, 2013, 26(3):631-637.
[9] NEJAD A R, GAO Z, MOAN T. On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drivetrains[J]. International Journal of Fatigue, 2014, 61(2):116-128.
[10] ZHANG D, HONG J, MA Y, et al. A probability method for prediction on high cycle fatigue of blades caused by aerodynamic loads[J]. Advances in Engineering Software, 2011, 42(12):1059-1073.
[11] 高云凯, 徐成民, 方剑光. 车身台架疲劳试验程序载荷谱研究[J]. 机械工程学报, 2014, 50(4):92-98. GAO Y K, XU C M, FANG J G. Study on the programed load spectrum of the body fatigue bench test[J]. Journal of Mechanical Engineering, 2014, 50(4):92-98(in Chinese).
[12] 张景柱, 崔清斌, 徐诚. 基于协同仿真的传动箱齿轮疲劳寿命预测方法[J]. 兵工学报, 2007, 28(12):1424-1427. ZHANG J Z, CUI Q B, XU C. Fatigue life prediction of transmission gear based on cooperation simulation technology[J]. Acta Armamentarii, 2007, 28(12):1424-1427(in Chinese).
[13] 王良模, 刘飞, 夏汉关, 等. 某汽车差速器齿轮的强度分析及疲劳寿命预测[J]. 重庆理工大学学报, 2012, 26(11):1-4. WANG L M, LIU F, XIA H G, et al. A car differential gear strength analysis and fatigue life prediction[J]. Journal of Chongqing University of Technology, 2012, 26(11):1-4(in Chinese).
[14] 钱文学, 尹晓伟, 谢里阳, 等. 轮盘疲劳可靠性分析的Monte-Carlo数字仿真[J]. 系统仿真学报, 2007, 19(2):254-256. QIAN W X, YIN X W, XIE L Y, et al. Reliability analysis of disk fatigue life based on Monte-Carlo method[J]. Journal of System Simulation, 2007, 19(2):254-256(in Chinese).
[15] 高阳, 白广忱, 张瑛莉. 涡轮盘多轴低循环疲劳寿命可靠性分析[J]. 航空学报, 2009, 30(9):1678-1682. GAO Y, BAI G C, ZHANG Y L. Reliability analysis of multiaxial low cycle fatigue life for turbine disk[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9):1678-1682(in Chinese).
[16] 谢里阳, 任俊刚, 吴宁祥, 等. 复杂结构部件概率疲劳寿命预测方法与模型[J]. 航空学报, 2015, 36(8):2688-2695. XIE L Y, REN J G, WU N X, et al. Probabilistic fatigue life prediction method and modeling for complex structural parts[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2688-2695(in Chinese).
[17] 《机械工程材料性能数据手册》编委会. 机械工程材料性能数据手册[M]. 北京:机械工业出版社, 1994:280-281. Editorial Committee on Mechanical Engineering Material Performance Data Sheet. Mechanical engineering material performance data sheet[M]. Beijing:China Machine Press, 1994:280-281(in Chinese).
[18] ASME Boiler and Pressure Vessel Committee on Pressure Vessels. Section VIII-Rules for construction of pressure vessels, Division 2-Alternative rules[M]. New York:The American Society of Mechanical Engineers, 2013:550-552.
[19] XIE L Y, LIN W Q. Control parameters and quantification for system reliability design[C]//Materials Science Forum. Zurich, Switzerland:Trans Tech Publications Inc., 2009:215-220.
[20] KYUBA H, DONG P. Equilibrium-equivalent structural stress approach to fatigue analysis of a rectangular hollow section joint[J]. International Journal of Fatigue, 2005, 27(1):85-94.

文章导航

/