材料工程与机械制造

不同浓度NaCl溶液下典型铝/钛合金电偶腐蚀当量折算关系

  • 陈跃良 ,
  • 王哲夫 ,
  • 卞贵学 ,
  • 王晨光 ,
  • 张勇
展开
  • 海军航空工程学院 青岛校区, 青岛 266041

收稿日期: 2016-05-19

  修回日期: 2016-06-27

  网络出版日期: 2016-08-10

基金资助

国家自然科学基金(51375490)

Equivalent conversion of galvanic corrosion of typical aluminum-titanium alloy in NaCl solution with different concentrations

  • CHEN Yuelian ,
  • WANG Zhefu ,
  • BIAN Guixue ,
  • WANG Chenguang ,
  • ZHANG Yong
Expand
  • Qingdao Extention, Naval Aeronautical Engineering Institute, Qingdao 266041, China

Received date: 2016-05-19

  Revised date: 2016-06-27

  Online published: 2016-08-10

Supported by

National Natural Science Foundation of China (51375490)

摘要

通过电化学试验,分别测量了不同浓度NaCl溶液中2A12铝合金和TA15钛合金的极化曲线,利用极化曲线外推法,得到自腐蚀电流密度和自腐蚀电位,并分析其变化规律;测量了不同浓度、不同阴阳极面积比的电偶腐蚀电流;建立电偶腐蚀仿真模型,得到电偶电流仿真结果;基于仿真结果,利用当量折算系数法,计算不同浓度NaCl溶液与水介质的折算关系。结果表明:2种金属在溶液中存在电位差导致电偶腐蚀的发生;电偶电流的测试结果与仿真结果吻合较好,仿真模型可以用来对电偶腐蚀进行模拟;得到了2A12铝合金与TA15钛合金偶接后不同浓度NaCl溶液与水介质的折算系数。

本文引用格式

陈跃良 , 王哲夫 , 卞贵学 , 王晨光 , 张勇 . 不同浓度NaCl溶液下典型铝/钛合金电偶腐蚀当量折算关系[J]. 航空学报, 2017 , 38(3) : 420450 -420450 . DOI: 10.7527/S1000-6893.2016.0204

Abstract

Polarization curves of 2A12 aluminum alloy and TA15 titanium alloy in NaCl solution of different concentration are measured by electrochemical tests separately. Self-corrosion current density and self-corrosion potential are obtained by the polarization curve extrapolation method, and change rules of them are analyzed. Galvanic corrosion current in different concentrations and different cathode/anode area ratios is measured. A galvanic corrosion simulation model is established, and simulation result of galvanic corrosion current is obtained. On the basis of the simulation results, equivalent relationships between the NaCl solution of different concentration and the aqueous media are calculated through an equivalent conversion coefficient method. Results indicate that galvanic corrosion occurs due to potential difference between two metals in a solution; Simulation results of galvanic current coincide well with electrochemical test results, and the simulation model can be used for simulating galvanic corrosion. Conversion coefficients of 2A12 aluminum alloy coupled with TA15 titanium alloy in the NaCl solution of different concentration and the aqueous media are obtained.

参考文献

[1] 胡建军, 陈跃良, 刘军. 飞机结构搭接件腐蚀试验研究[J]. 强度与环境, 2011, 38(4):49-53. HU J J, CHEN Y L, LIU J. Investigation on lap-joints material corrosion test of aircraft structure[J]. Structure & Environment Engineering, 2011, 38(4):49-53(in Chinese).
[2] 徐火平, 刘慧丛, 朱立群, 等. 盐雾环境中高强铝合金点腐蚀行为与暴露面积的关系[J]. 航空材料学报, 2010, 30(4):59-64. XU H P, LIU H C, ZHU L Q, et al. Relation between pitting corrosion behavior and exposed area of high strength aluminum alloys in neutral salt spray[J]. Journal of Aeronautical Materials, 2010, 30(4):59-64(in Chinese).
[3] 刘文珽, 李玉梅, 陈群志, 等. 飞机结构腐蚀部位涂层加速试验环境谱研究[J]. 北京航空航天大学学报, 2002, 28(1):109-112. LIU W T, LI Y M, CHEN Q Z, et al. Accelerated corrosion environmental spectrums for testing surface coatings of critical areas of flight aircraft structures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(1):109-112(in Chinese).
[4] 陈跃良, 段成美, 金平. 飞机结构局部环境加速腐蚀当量谱[J]. 南京航空航天大学学报, 1999, 31(3):338-341. CHEN Y L, DUAN C M, JIN P. Local environment and accelerating corrosion equivalent spectrums of aircraft structure[J]. Journal of Nanjing University of Aeronautics and Astronautics, 1999, 31(3):338-341(in Chinese).
[5] 李晨钰, 朱立群, 刘慧丛, 等. 温度对2A12铝合金在模拟油箱积水环境中初期腐蚀行为的影响[J]. 航空学报,2013, 34(6):1493-1500. LI C Y, ZHU L Q, LIU H C, et al. Influence of temperature on initial corrosion behavior of aluminum alloy 2A12 in simulated tank water environment[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1493-1500(in Chinese).
[6] WANG B B, WANG Z Y, HAN W, et al. Effects of magnesium chloride-based multicomponent salts on atmospheric corrosion of aluminum alloy 2024[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4):1199-1208.
[7] DAN Z, MUTO I, HARA N. Effects of environmental factors on atmospheric corrosion of aluminum and its alloy under constant dew point conditions[J]. Corrosion Science, 2012, 57(4):22-29.
[8] 张海威, 何宇廷, 范超华, 等. 腐蚀/疲劳交替作用下飞机金属材料疲劳寿命计算方法[J]. 航空学报, 2013, 34(5):1114-1121. ZHANG H W, HE Y T, FAN C H, et al. Fatigue life prediction method for aircraft metal material under alternative corrosion/fatigue process[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5):1114-1121(in Chinese).
[9] 宋恩鹏, 刘文珽, 杨旭. 飞机内部腐蚀关键部位加速试验环境谱研究[J]. 航空学报, 2006, 27(4):646-649. SONG E P, LIU W T, YANG X. Study on accelerated corrosion test environment spectrum for internal aircraft structure[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4):646-649(in Chinese).
[10] 张丹峰, 陈跃良. 当量加速试验条件下铝合金腐蚀形态演化规律[J]. 南京航空航天大学学报, 2010, 42(3):340-342. ZHANG D F, CHEN Y L. Corrosion damage evolvement rule of aluminum alloy under equivalent accelerated condition[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42(3):340-342(in Chinese).
[11] 张有宏, 吕国志, 陈跃良. LY12-CZ铝合金预腐蚀及疲劳损伤研究[J]. 航空学报, 2005, 26(6):779-782. ZHANG Y H, LV G Z, CHEN Y L. Predicting fatigue life from pre-corroded LY12-CZ aluminum test[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(6):779-782(in Chinese).
[12] 刘文珽. 飞机结构腐蚀/老化控制与日历延寿技术[M]. 北京:国防工业出版社, 2010:80-81. LIU W T. Corrosion/aging control and prolonging the calendar life technology of aircraft structure[M]. Beijing:National Defence Industry Press, 2010:80-81(in Chinese).
[13] 陈跃良, 段成美. 海军飞机环境谱加速腐蚀当量折算研究[R]. 青岛:海军航空技术学院, 1995. CHEN Y L, DUAN C M. Study on equivalent of accelerated corrosion of naval aircraft environment spectrums[R]. Qingdao:Naval Aeronautics & Astronautics Institute, 1995(in Chinese).
[14] 刘文珽. 飞机结构日历寿命体系评定技术[M]. 北京:航空工业出版社, 2004:110-111. LIU W T. The evaluation technique of calendar life for aircraft structure[M]. Beijing:Aviation Industry Press, 2004:110-111(in Chinese).
[15] 董超芳, 生海, 安英辉, 等. Cl-作用下2A12铝合金在大气环境中腐蚀初期的微区电化学行为[J]. 北京科技大学学报, 2009, 31(7):878-883. DONG C F, SHENG H, AN Y H, et al. Local electrochemical behavior of 2A12 aluminum alloy in the initial stage of atmospheric corrosion under Cl- conditions[J]. Journal of University Science and Technology Beijing, 2009, 31(7):878-883(in Chinese).
[16] 张睿, 张慧霞, 贾瑞灵. 钛及其合金的腐蚀[J]. 材料开发与应用, 2013, 28(4):96-103. ZHANG R, ZHANG H X, JIA R L. The corrosion resistance of titanium and its alloy[J]. Development andApplication of Materials, 2013, 28(4):96-103(in Chinese).
[17] JARFALL L. Verification of the damage tolerance of a fighter aircraft[J]. Fatigue, 1994, 16(1):67-74.
[18] DURET N. Titanium for damage tolerance application on A380[C]//The 10th Conference on Titanium. Hamburg:TMS, 2003, 2667-2671.
[19] CHANG H Y, PARK Y S, HWANG W S. Initial modeling of crevice corrosion in 316L stainless steels[J]. Materials Processing Technology, 1998, 103(2):206-217.
[20] 姜应律, 吴荫顺. 用极化曲线研究钛合金在水、醇中腐蚀机理的差异[J]. 腐蚀科学与防护技术, 2005, 17(3):154-158. JIANG Y L, WU Y S. Study of mechanism of electrochemical reaction for titanium alloy TC4 in 3% NaCl solution and ethanol by polarization curve[J]. Corrosion Science and Protection Technology, 2005, 17(3):154-158(in Chinese).
[21] 王玲, 宣卫芳, 牟献良. 2A11铝合金/碳钢偶接件在强化自然环境条件下的腐蚀特性[J]. 表面技术, 2011, 40(5):1-4. WANG L, XUAN W F, MOU X L. Corrosion performance of 2A11 aluminum alloy coupled with carbon steel in accelerated natural environmental condition[J]. Surface Technology, 2011, 40(5):1-4(in Chinese).
[22] 李金桂. 腐蚀控制系统工程学概论[M]. 北京:化学工业出版社, 2009:55-57. LI J G. An introduction to system engineering science for corrosion control[M]. Beijing:Chemical Industry Press, 2009:55-57(in Chinese).

文章导航

/