一种基于动模态分解的翼型流动转捩预测新方法
收稿日期: 2016-01-11
修回日期: 2016-07-21
网络出版日期: 2016-08-08
基金资助
国家自然科学基金(11302177);民机专项(MJ-2015-F-016)
A novel method for automatic transition prediction of flows over airfoils based on dynamic mode decomposition
Received date: 2016-01-11
Revised date: 2016-07-21
Online published: 2016-08-08
Supported by
National Natural Science Foundation of China (11302177); Civil Aircraft Project (MJ-2015-F-016)
考虑自由转捩的定常/非定常流动Navier-Stokes方程数值求解,对于翼型流动细节的精确模拟和气动力的精确预测均具有十分重要的意义。采用动模态分解(DMD)方法进行流动稳定性分析,再结合eN方法,提出了一套适用于翼型绕流的转捩预测新方法,称为DMD/eN方法。相比于传统的线性稳定性分析方法,DMD方法不需要求解附面层方程和线性稳定性方程,也没有引入平行流假设,具有更好的理论适用性和算法鲁棒性。开展了NLF0416、S809和SD7003等翼型的转捩预测数值验证研究,通过与实验结果以及与传统的基于线性稳定性分析的eN方法的比较,验证了本文所发展的转捩预测新方法在预测翼型的定常流动和非定常流动转捩方面的正确性,也表明了该方法具有解决含层流分离泡的翼型绕流转捩预测的能力。
韩忠华 , 王绍楠 , 韩莉 , 刘方良 , 许建华 , 宋文萍 . 一种基于动模态分解的翼型流动转捩预测新方法[J]. 航空学报, 2017 , 38(1) : 120034 -120034 . DOI: 10.7527/S1000-6893.2016.0225
Transition prediction is crucial for the simulation of steady and unsteady flows, since it can improve the accuracy of predicting the aerodynamic forces as well as capturing the flow phenomena. By combining dynamic mode decomposition (DMD) and eN method, a novel transition prediction method for flows over airfoils is proposed. Compared with conventional linear stability-analysis-based eN method, DMD requires neither the solution of boundary layer and linear stability equations, nor the assumption of parallel flows, and has better applicability in theory and is more algorithmically robust. Transition prediction of steady flows around NLF0416 and S809 airfoils and unsteady flow around SD7003 airfoil are carried out. The predicted transition locations are in reasonably good agreement with the experimental data and the results of eN method based on linear stability analysis. It is shown that the proposed DMD/eN method is feasible for transition prediction for steady and unsteady flows over airfoils, including the flows with laminar separation bubbles.
[1] 符松, 王亮. 湍流转捩模式研究进展[J]. 力学进展, 2007, 37(3):409-416. FU S, WANG L. Progress in turbulence/transition modelling[J]. Advances in Mechanics, 2007, 37(3):409-416(in Chinese).
[2] 周恒. 关于转捩和湍流的研究[C]//2003空气动力学前沿研究论文集. 北京:中国空气动力学会, 2003:87-93. ZHOU H. Studies on transition and turbulence[C]//2003 Advanced Research Papers on Aerodynamics. Beijing:Aerodynamic Society of China, 2003:87-93(in Chinese).
[3] FASEL H F, MEITZ H L, BACHAN C R. DNS and LES for investigating transition and transition control:AIAA-1997-1820[R]. Reston:AIAA,1997.
[4] SCHLATTER S. Assessment of direct numerical simulation data of turbulent boundary layers[J]. Journal of Fluid Mechanics, 2010, 659:116-126.
[5] BRAZELL M J, KIRBY A, STOELLINGER M, et al. Using LES in a Discontinuous Galerkin method with constant and dynamic SGS models:AIAA-2015-0060[R]. Reston:AIAA, 2015.
[6] 陈奕, 高正红. Gamma-Theta转捩模型在绕翼型流动问题中的应用[J]. 空气动力学学报, 2009, 27(4):411-419. CHEN Y, GAO Z H. Application of Gamma-Theta transition model to flows around airfoils[J]. Acta Aerodynamic Sinica, 2009, 27(4):411-419(in Chinese).
[7] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables-Part I:model formulation[J]. Journal of Turbomachinery, 2006, 128(3):413-422.
[8] GRABE C, KRUMBEIN A. Extension of the γ-Reθt model for prediction of crossflow transition:AIAA-2014-1269[R]. Reston:AIAA, 2014.
[9] 符松, 王亮. 基于雷诺平均方法的高超音速边界层转捩模拟[J]. 中国科学:G辑, 2009, 39(4):617-626. FU S, WANG L. Modelling flow transition in a hypersonic boundary layer with Reynolds-averaged Navier-Stokes approach[J]. Science in China:Series G, 2009, 39(4):617-626(in Chinese).
[10] STOCK H W, HAASE W. Navier-Stokes airfoil computations with eN transition prediction including transitional flow regions[J]. Journal of Aircraft, 2000, 38(11):2059-2066.
[11] 张坤, 宋文萍. NS方程计算中耦合转捩自动判断的阻力精确计算方法初探[J]. 空气动力学学报, 2009, 27(4):400-404. ZHANG K, SONG W P. Accurate drag calculation by coupling automatic prediction of transition point to the Navier-Stokes method[J]. Acta Aerodynamic Sinica, 2009, 27(4):400-404(in Chinese).
[12] KRUMBEIN A, KRIMMELBEIN N, SEYFERT C. Automatic transition prediction in unsteady airfoil flows using an unstructured CFD code:AIAA-2011-3365[R]. Reston:AIAA, 2011.
[13] RADESPIEL R, WINDTE J, SCHOLZ U. Numerical and experimental flow analysis of moving airfoils with laminar separation bubbles[J]. AIAA Journal, 2007, 45(6):1346-1356.
[14] WINDTE J, RADESPIEL R. Propulsive efficiency of a moving airfoil at transitional low Reynolds numbers[J]. AIAA Journal, 2008, 46(9):2165-2177.
[15] 刘方良. 低雷诺数翼型流动转捩判断与优化设计方法[D]. 西安:西北工业大学, 2014:33-67. LIU F L. Transition prediction and optimization design method for low-Reynolds-number airfoil[D]. Xi'an:Northwestern Polytechnical University, 2014:33-67(in Chinese).
[16] HERBERT T. Parabolized stability equations[J]. Annual Review of Fluid Mechanics, 1997, 291(1):245-283.
[17] BERTOLOTTI F P, HERBERT T. Analysis of the linear stability of compressible boundary layers using the PSE[J].Theoretical and Computational Fluid Dynamics, 1991, 3(2):117-124.
[18] NOACK B R, MORZYNSKI M, TADMOR G. Reduced-order modelling for flow control[M]. Udine:CISM, 2011:77-110.
[19] CHATTERJEE A. An introduction to the proper orthogonal decomposition[J]. Computational Science, 2000, 78(7):808-807.
[20] SIROVICH L. Turbulence and the dynamics of coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3):561-590.
[21] BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25(1):539-575.
[22] SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656:5-28.
[23] ROWLEY C, MEZIC I, BAGHERI S, et al. Spectral analysis of nonlinear flows[J]. Journal of Fluid Mechanics, 2009, 641:115-127.
[24] SCHMID P J, LI L, JUNIPER M, et al. Applications of the dynamic mode decomposition[J]. Theoretical and Computational Fluid Dynamics, 2011, 25(1-4):249-259.
[25] SCHMID P J. Application of the dynamic mode decomposition to experimental data[J]. Experiments in Fluids, 2011, 50(4):1123-1130.
[26] SOMERS D M. Design and experimental results for a natural-laminar-flow airfoil for general aviation applications:NASA-TP-1861[R]. Washington, D.C.:NASA, 1981.
[27] SOMERS D M. Design and experimental results for the S809 airfoil:NREL/SR-440-6918[R]. Colorado:NREL, 1997.
[28] 张坤. 基于NS方程的机翼边界层转捩判断及应用研究[D]. 西安:西北工业大学, 2011:97-157. ZHANG K. Automatic transition prediction and application to 3D swept wings[D]. Xi'an:Northwestern Polytechnical University, 2011:97-157(in Chinese).
/
〈 | 〉 |