流体力学与飞行力学

喉道对压气机超声叶栅流态及性能的影响

  • 江雄 ,
  • 邱名 ,
  • 范召林
展开
  • 中国空气动力研究与发展中心 计算空气动力学研究所, 绵阳 621000

收稿日期: 2016-04-11

  修回日期: 2016-06-14

  网络出版日期: 2016-06-28

基金资助

国家自然科学基金(11572339)

Effect of supersonic compressor cascade throat on flow pattern and cascade performance

  • JIANG Xiong ,
  • QIU Ming ,
  • FAN Zhaolin
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2016-04-11

  Revised date: 2016-06-14

  Online published: 2016-06-28

Supported by

National Natural Science Foundation of China (11572339)

摘要

为更深入认识超声叶栅流动机理,以ARL-SL19、CM-1.2和SM-1.5叶栅为研究对象,采用数值模拟和理论分析相结合的方式开展喉道对超声叶栅激波结构和性能影响的研究。研究结果表明:超声叶栅存在两种稳定工作状态,起动状态和溢流状态;在来流马赫数较高时,叶栅只工作于起动状态;在来流马赫数较低时,叶栅只工作于溢流状态;存在一个马赫数区间,叶栅的工作状态由前一个状态决定;对于低马赫数C形超声叶栅,高压比下气动喉道起决定因素;对于高马赫数S形超声叶栅,真实喉道起决定因素;若为气动喉道导致溢流,溢流实现更大的裕度和更低的损失,进口马赫数和气流角会受压比影响;若为真实喉道引进的溢流,溢流会降低裕度并增加损失,叶栅保持唯一进气角流动,但进口气流角和马赫数与起动状态不同。

本文引用格式

江雄 , 邱名 , 范召林 . 喉道对压气机超声叶栅流态及性能的影响[J]. 航空学报, 2017 , 38(3) : 120308 -120308 . DOI: 10.7527/S1000-6893.2016.0195

Abstract

To have a better understanding of the flow mechanism of the supersonic cascade, the effect of throat on supersonic cascade's shock-wave configuration and performance is studied through numerical simulation and theoretical analysis. Cascade ARL-SL19, Cascade CM-1.2 and Cascade SM-1.5 are taken as the object of the study. The results show that there are two kinds of steady working states for the supersonic cascade:starting state and overflow state. When the inlet Mach number is high, the supersonic cascade works in the starting state; when the Mach number is low, the supersonic cascade works in the overflow state. There is a Mach number range, and the supersonic cascade works in the state the same as the previous state. The aerodynamic throat is determinant in near stall pressure-ratio for the C-shaped supersonic cascade with divergent channel at lower supersonic, but the real throat is determinant for S-shaped supersonic cascade with convergent channel. If it is caused by the aerodynamic throat, the overflow achieves less loss and greater margin, and the inlet Mach number and the flow angle are influenced by the outlet pressure. If it is caused by the real throat, the overflow achieves more loss and smaller margin, and the cascade still works in the unique incidence.

参考文献

[1] KANTROWITZ A. The supersonic axial-flow compressor:NACA-Report 974[R]. Washington, D.C.:NACA, 1946.
[2] ERWIN J R, WRIGHT L C, KANTROWITZ A. Investigation of an experimental supersonic axial-flow compressor:NACA-RM-L6J01b[R]. Washington, D.C.:NACA, 1947.
[3] RITTER W K, JOHNSEN I A. Performance of 24-inch supersonic axial-flow compressor in air I:Performance of compressor rotor at design tip speed of 1600 feet per second:NACA-RM-E7L10[R]. Washington, D.C.:NACA, 1948.
[4] ULLMAN G N. Experimental investigation of a 16-inch impulse-type supersonic compressor rotor:NACA-RM-E51G19[R]. Washington, D.C.:NACA, 1951.
[5] KLAPPROTH J F, ULLMAN G N, TYSL E R. Performance of an impulse-type supersonic compressor with stators:NACA-RM-52B22[R]. Washington, D.C.:NACA, 1952.
[6] KANTROWITZ A, DONALDSON C. Preliminary investigation of supersonic diffusers:NACA ACR-L5D20[R]. Washington, D.C.:NACA, 1945.
[7] 张林, 张堃元, 金志光, 等. 高超声速二元进气道顶板移动变几何方案数值模拟[J]. 航空学报, 2012, 33(10):1800-1808. ZHANG L, ZHANG K Y, JIN Z G, et al. Numerical simulation of a variable geometry hypersonic 2D inlet designed with compressible ramp movable[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1800-1808(in Chinese).
[8] 范晓樯. 高超声速进气道的设计、计算与实验研究[D]. 长沙:国防科学技术大学, 2006. FAN X Q. Design method, numerical simulation and experimental research of hypersonic inlet[D]. Changsha:National University of Defense Technology, 2006(in Chinese).
[9] GRAGAM R C, KLAPPROTH J F, BARINA F J. Investigation of off-design performance of shock-in-rotor type supersonic blading:NACA-RM-E51C22[R]. Washington, D.C.:NACA, 1951.
[10] WENNERSTROM A J, FROST G R. Design of a 1500 ft/sec, transonic, high-through-flow, single-stage axial flow compressor with low hub/tip ratio:AFAPL-TR-76-59/ADB-016386[R]. Washington, D.C.:ARL, 1976.
[11] TWEEDT D L, SCHREIBER H A, STARKEN H. Experimental investigation of the performance of a supersonic compressor cascade:NACA-TM-100879[R]. Washington, D.C.:NACA, 1988.
[12] LIEBLEIN S, LEWIS G W, SANDERCOCK D M. Experimental investigation of an axial-flow compressor inlet stage operating at transonic relative inlet Mach number I-Overall performance of stage with transonic rotor and subsonic stators up to rotor relative inlet mach number of 1.1:NACA-RM-E52A24[R]. Washington, D.C.:NACA, 1952.
[13] STRAZISAR A J, WOOD J R, HATHAWAY M D, et al. Laser anemometer measurements in a transonic axial-flow fan rotor:NASA-TP-2879[R]. Washington, D.C.:NASA, 1989.
[14] CALVERT W J, GINDER R B. Transonic fan and compressor design[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Science, 1999, 213(5):419-436.
[15] BIOLLO R, BENINI E. Recent advances in transonic axial compressor aerodynamics[J]. Progress in Aerospace Sciences, 2013, 56:1-18.
[16] MOORE R D, REID L. Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26 respectively, and with design pressure ratio of 2.05:NASA-TP-1659[R]. Washington, D.C.:NASA, 1980.
[17] MOORE R D, REID L. Design and overall performance of four highly loaded, high-speed inlet stages for an advanced high-pressure-ratio core compressor:NASA-TP-1337[R]. Washington, D.C.:NASA, 1978.
[18] AGARD. CFD validation for propulsion system components:Agard-ar-355[R]. Neuilly-sur-Seine:North Atlantic Treaty Organization AGARD, 1998.
[19] LAWLOR S P, BALDWIN P. Conceptual design of a supersonic C02 compressor:ASME Paper GT2005-68349[R]. Reston:ASME, 2005.
[20] ROBERT S, PETER B, JAMES K. Insertion of shock wave compression technology into micro turbines for increased efficiency and reduced costs:ASME Paper GT2005-68203[R]. Reston:ASME, 2005.
[21] GROSVENOR A D, BROWN P M, BUCHER J R, et al. Measured and predictec performance of a high pressure ratio supersonic compressor rotor:ASME Paper GT2008-50150[R]. Reston:ASME, 2008.
[22] 肖翔. 对转冲压压气机冲压叶轮内部流动分析研究[D]. 北京:中国科学院研究生院, 2007. XIAO X. Investigation on counter-rotating ram-pressor impeller internal flow[D]. Beijing:Graduate University of Chinese Academy of Sciences, 2007(in Chinese).
[23] 邱名. 高级压比轴流压气机转子通道内激波组织研究[D]. 南京:南京航空航天大学, 2014. QIU M. Research the shock control law in high stage pressure-ratio compressor rotor channel[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[24] 韩吉昂, 钟兢军, 严红明, 等. 旋转冲压压缩转子三维进气流道数值研究[J]. 航空动力学报, 2009, 24(5):1079-1088. HAN J A, ZHONG J J, YAN H M et al. Numerical research of three dimensional flow-path in a ram-rotor[J]. Journal of Aerospace Power, 2009, 24(5):1079-1088(in Chinese).
[25] 韩吉昂, 钟兢军, 严红明, 等. 旋转冲压压缩转子二维进气流道数值研究[J]. 航空动力学报, 2008, 23(6):1054-1060. HAN J A, ZHONG J J, YAN H M, et al. Numerical research of two-dimensional flow-path in ram-rotor[J]. Journal of Aerospace Power, 2008, 23(6):1054-1060(in Chinese).
[26] 杨凌, 钟兢军, 韩吉昂, 等. 关键几何参数对旋转冲压压缩转子流场及性能影响研究[J]. 工程热物理学报, 2012, 33(3):388-392. YANG L, ZHONG J J, HAN J A, et al. Influence of the two geometric parameters on ram-rotor flow field and performance[J]. Journal of Engineering Thermophysics, 2012, 33(3):388-392(in Chinese).
[27] FLEETER S, HOLTMAN R, MCCLURE R B. Experimental investigation of a supersonic compressor cascade:ARL-TR-75-0208[R]. Washington, D.C.:ARL, 1975.
[28] 邱名, 周正贵, 刘龙龙, 等. 超声叶型设计方法研究[J]. 航空学报, 2014, 35(4):975-985. QIU M, ZHOU Z G, LIU L L, et al. Investigation of supersonic compressor blade profile design method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4):975-985(in Chinese).
[29] LEVINE P. Two-dimensional inflow conditions for a supersonic compressor with curved blades[J]. Journal of Applied Mechanics, 1957, 24(2):165-169.
[30] YORK R E, WOODARD W S. Supersonic compressor cascades-an analysis of the entrance region flow field contain detached[J]. Journal of Engineering for Power, 1976, 98(2):247-257.

文章导航

/