铝合金厚板搅拌摩擦焊焊缝疏松缺陷形成机理
收稿日期: 2016-04-26
修回日期: 2016-06-16
网络出版日期: 2016-06-22
基金资助
国家自然科学基金(51265043,51265042);江西省高等学校科技落地计划(KJLD13055,KJLD12074)
Formation mechanism of weld loose defect in friction stir welding thick plates of aluminum alloy
Received date: 2016-04-26
Revised date: 2016-06-16
Online published: 2016-06-22
Supported by
National Natural Science Foundation of China (51265043, 51265042); Landed Plan of Science and Technology in Colleges and Universities of Jiangxi Province (KJLD13055, KJLD12074)
采用圆锥形搅拌头焊接20 mm厚的7075-T6铝板,分析焊接过程中焊缝内部疏松缺陷的形成过程及原因。研究表明,焊缝表面成形良好,无明显缺陷。但是,在焊缝轴肩区和焊核区之间出现了疏松缺陷。分析认为,焊缝上、下部金属温度差太大,导致其塑性流动行为发生变化是疏松缺陷形成的主要原因。搅拌摩擦焊(FSW)过程中,焊缝上部金属温度较高,而底部温度仍然很低,脱离搅拌针端部的塑化金属在周围冷金属巨大的变形抗力作用下转而沿搅拌针表面往上迁移。到达轴肩区下方汇聚区时,由于轴肩区金属温度高,向下的挤压力太小,导致回迁上来的塑化金属继续往上迁移并冲破轴肩区而沿轴肩边缘溢出形成飞边。汇聚区内没有足够的塑化金属填充、焊缝无法被压实而产生疏松孔洞。通过建立疏松缺陷形成的物理模型,可以更直观地反映出焊缝金属流动形态及缺陷形成过程。
毛育青 , 柯黎明 , 刘奋成 , 陈玉华 . 铝合金厚板搅拌摩擦焊焊缝疏松缺陷形成机理[J]. 航空学报, 2017 , 38(3) : 420367 -420367 . DOI: 10.7527/S1000-6893.2016.0197
20 mm thick 7075-T6 aluminum alloys are joined by friction stir welding (FSW) using a tapered pin, and the formation process and reason of loose void defect are investigated during FSW. The results show that the weld surfaces are good without any defects. However, the loose defect is found in all welds between the shoulder zone and the nugget zone. The main reason is that the metal is stirred abnormally to cause the change in the plastic flow behavior due to high temperature difference on the top and bottom of the weld. During FSW, the temperature on the top is high while low on the bottom of the weld, the plastic material fallen off the pin-tip suffers from large deformation constraining force of the surrounding cold metal, and then moves upwards along the surface of the pin to reach the shoulder zone. The extruding force to plastic material is small because the temperature is too high, and the plastic material continues to migrate upwards and traverses the shoulder zone to flow along the edge of tool shoulder and form the flash finally. There is not enough plasticized metal to fill the cavity, and the loose zone is thus formed in the weld. By establishing the physical model for loose defect formation, the flow behavior of the plastic material and the formation process of loose defect in FSW can be directly reflected.
[1] BALASUBRAMANIAN V, RAVISANKAR V, MAD-HUSUDHAN R G. Effect of postweld aging treatment on fatigue behavior of pulsed current welded AA7075 aluminum alloy joints[J]. Journal of Materials Engineering and Performance, 2008, 17(2):224-233.
[2] FULLER C B, MAHONEY M W, CALABRESE M, et al. Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds[J]. Materials Science and Engineering:A, 2010, 527(9):2233-2240.
[3] BAHEMMAT P, HAGHPANAHI M, GIVI M K B, et al. Study on dissimilar friction stir butt welding of AA7075-O and AA2024-T4 considering the manufacturing limitation[J]. The International Journal of Advanced Manufacturing Technology, 2012, 59(9):939-953.
[4] MAO Y Q, KE L M, LIU F C, et al. Effect of tool pin eccentricity on microstructure and mechanical properties in friction stir welded 7075 aluminum alloy thick plate[J]. Materials and Design, 2014, 62:334-343.
[5] SIVARAJ P, KANAGARAJAN D, BALASUBRAMANIAN V. Effect of post-weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651 aluminium alloy[J]. Defence Technology, 2014, 10:1-8.
[6] CABIBBO M, FORCELLESE A, SIMONCINI M, et al. Effect of welding motion and pre-/post-annealing of friction stir welded AA5754 joints[J]. Materials and Design, 2016, 93:146-159.
[7] HU Z L, WANG X S, PANG Q, et al. The effect of postprocessing on tensile property and microstructure evolution of friction stir welding aluminum alloy joint[J]. Materials Characterization, 2015, 99:180-187.
[8] DORBANE A, MANSOOR B, AYOUB G, et al. Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061[J]. Materials Science and Engineering:A, 2016, 651:720-733.
[9] MIRONOV S, ONUMA T, SATO Y S, et al. Microstructure evolution during friction-stir welding of AZ31 magnesium alloy[J]. Acta Materialia, 2015, 100:301-312.
[10] QIAN J W, LI J L, SUN F, et al. An analytical model to optimize rotation speed and travel speed of friction stir welding for defect-free joints[J]. Scripta Materialia, 2013, 68(3-4):175-178.
[11] 李宝华, 唐众民, 鄢江武, 等. 5A06铝合金厚板搅拌摩擦焊工艺研究[J]. 热加工工艺, 2011, 40(11):152-154. LI B H, TANG Z M, YAN J W, et al. Research on friction stir welding parameters of thick 5A06 aluminum alloy[J]. Hot Working Technology, 2011, 40(11):152-154(in Chinese).
[12] 赵衍华, 林三宝, 吴林. 2014铝合金搅拌摩擦焊接头缺陷分析[J]. 焊接, 2005(7):9-12. ZHAO Y H, LIN S B, WU L. Analysis of friction stir welding defects in 2014 aluminum alloy[J]. Welding & Joining, 2005(7):9-12(in Chinese).
[13] 王磊, 谢里阳, 李兵. 铝合金搅拌摩擦焊焊接过程缺陷分析[J]. 机械制造, 2008, 46(522):5-9. WANG L, XIE L Y, LI B. Analysis of welding defect in friction stir welding aluminum alloy[J]. Machinery, 2008, 46(522):5-9(in Chinese).
[14] SHRIVASTAVA A, DINGLER C, ZINN M, et al. Physics-based interpretation of tool-workpiece interface temperature signals for detection of defect formation during friction stir welding[J]. Manufacturing Letters, 2015, 5:7-11.
[15] KIM Y G, FUJII H, TSUMURA T, et al. Three defect types in friction stir welding of aluminum die casting alloy[J]. Materials Science and Engineering:A, 2006, 415:250-254.
[16] XU W F, LIU J H, LUAN G H, et al. Temperature evolution, microstructure and mechanical properties of friction stir welded thick 2219-O aluminum alloy joints[J]. Materials and Design, 2009, 30(6):1886-1893.
[17] MAO Y Q, KE L M, LIU F C, et al. Investigations on temperature distribution, microstructure evolution, and property variations along thickness in friction stir welded joints for thick AA7075-T6 plates[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(1):141-154.
[18] CANADAY C T, MOORE M A, TANG W, et al. Through thickness property variations in a thick plate AA7050 friction stir welded joint[J]. Materials Science and Engineering:A, 2013, 559:678-682.
[19] HEURTIER P, JONES M J, DESRAYAUD C, et al. Mechanical and thermal modeling of friction stir welding[J]. Journal of Materials Processing Technology, 2006, 171:348-357.
[20] 柯黎明, 潘际銮, 邢丽, 等. 搅拌针形状对搅拌摩擦焊焊缝截面形貌的影响[J]. 焊接学报, 2007, 28(5):16-20. KE L M, PAN J L, XING L, et al. Influence of pin shape on weld transverse morphology in friction stir welding[J]. Transaction of the China Welding Institution, 2007, 28(5):16-20(in Chinese).
[21] KE L M, XING L, INDACOCHEA J E. Material flow patterns and cavity model in friction-stir welding of aluminum alloys[J]. Metallugical and Materials Transactions:B, 2004, 35(1):153-160.
[22] PRANGNELL P B, HEASON C P. Grain structure formation during friction stir welding observed by the ‘stop action technique’[J]. Acta Materialia, 2005, 53(11):3179-3192.
[23] DAS B, BAG S, PAL S. Defect detection in friction stir welding process through characterization of signals by fractal dimension[J]. Manufacturing Letters, 2016, 7:6-10.
[24] LIU X C, WU C S, PADHY G K. Improved weld macrosection, microstructure and mechanical properties of 2024Al-T4 butt joints in ultrasonic vibration enhanced friction stir welding[J]. Sciences and Technology of Welding and Joining, 2015, 20(4):345-352.
[25] 柯黎明, 潘际銮, 邢丽, 等. 搅拌摩擦焊焊缝金属塑性流动的抽吸-挤压理论[J]. 机械工程学报, 2009, 45(4):89-94. KE L M, PAN J L, XING L, et al. Sucking-extruding theory for the material flow in friction stir welds[J]. Journal of Mechanical Engineering, 2009, 45(4):89-94(in Chinese).
/
〈 | 〉 |