CRM翼身组合体模型高阶精度数值模拟
收稿日期: 2016-04-07
修回日期: 2016-06-06
网络出版日期: 2016-06-15
基金资助
国家重点研发计划(2016YFB0200700)
High-order numerical simulation of CRM wing-body model
Received date: 2016-04-07
Revised date: 2016-06-06
Online published: 2016-06-15
Supported by
National Key Research and Development Program (2016YFB0200700)
基于五阶空间离散精度的WCNS格式,开展了CRM翼身组合体模型的高阶精度数值模拟,以评估WCNS格式对复杂外形的模拟能力以及典型运输机巡航构型阻力预测的精度。首先依照DPW组委会提出的网格生成指导原则,利用ICEM软件生成了粗、中、细、极细四套网格,网格规模从"粗网格"的2 578 687个网格点逐渐扩展到"极细网格"的65 464 511个网格点。研究了设计升力系数下,网格规模对气动特性、压力分布和翼根后缘局部分离区的影响,采用"中等网格"开展了抖振特性的数值模拟研究。通过与二阶精度的计算结果、DPW V统计结果和部分试验结果的对比分析,高阶精度数值模拟结果表明,阻力系数计算结果与DPW V统计平均结果吻合较好;网格密度对机翼上表面的激波位置和翼身结合部后缘局部分离区略有影响;迎角为4°时,升力系数下降的主要原因是机翼上表面激波诱导分离区和翼身结合部后缘局部分离区的增加。
王运涛 , 孙岩 , 孟德虹 , 王光学 . CRM翼身组合体模型高阶精度数值模拟[J]. 航空学报, 2017 , 38(3) : 120298 -120298 . DOI: 10.7527/S1000-6893.2016.0185
High-order numerical simulation on CRM wing-body model is presented with the fifth-order WCNS scheme to assess the ability of high-order WCNS scheme on complex configuration simulation and the precision in predicating cruise drag of transonic configuration. Four grids (coarse, medium, fine, and extra fine) are created with software ICEM according to the gridding guidelines provided by DPW organizing committee, and the grid sizes range from 2 578 687 cells for the "Coarse" level to 65 464 511 cells for the "Extra-fine" level. Computation and analysis on four grids are carried out to investigate the grid effect on aerodynamic characteristics, pressure distribution and the local separation bubble at the wing root trailing edge, and the "Medium" grid is used in the numerical simulation and study of buffet onset. Compared to second-order numerical results, the statistic results submitted by DPW V participants and some experimental data, the high-order numerical results show that the drag coefficient computational results agree well with statistic data from DPW V participants; the grid density has some influence on the location of the shock wave and the size of the local separation bubble at the wing root trailing edge; the enlargement of the size of the separation zone due to shock wave and the local separation bubble at the wing root trailing edge on the upper surface of the wing is the main reason of the lift lift curve break at 4° angle of attack.
[1] LEVY D W, VASSBERG J C, WAHLS R A, et al. Summary of data from the first AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2003, 40(5):875-882.
[2] LAFLIN K R, VASSBERG J C, WAHLS R A, et al. Summary of data from the second AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178.
[3] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the third AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2008, 45(3):781-798.
[4] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the fourth AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1070-1089.
[5] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
[6] VASSBERG J C, DEHAAN M A, RIVERS S M, et al. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R]. Reston:AIAA, 2008.
[7] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[8] DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165:24-44.
[9] DENG X G, MIN R B, MAO M L, et al. Further studies on geometric conservation law and application to high-order finite difference scheme with stationary grid[J]. Journal of Computational Physics, 2013, 239:90-111.
[10] 王运涛, 孙岩, 王光学, 等. DLR-F6翼身组合体的高阶精度数值模拟[J]. 航空学报, 2015, 36(9):2923-2929. WANG Y T, SUN Y, WANG G X, et al. High-order numerical simulation of DLR-F6 wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2923-2929(in Chinese).
[11] WANG Y T, ZHANG Y L, LI S, et al. Calibration of a γ-Reθ transition model and its validation with high-order numerical method[J]. Chinese Journal of Aeronautics, 2015, 28(3):704-711.
[12] 王运涛, 孟德虹, 孙岩, 等. DLR-F6/FX2B翼身组合体构型高阶精度数值模拟[J]. 航空学报, 2016, 37(2):484-490. WANG Y T, MENG D H, SUN Y, et al. High-order numerical simulation of DLR-F6/FX2B wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):484-490(in Chinese).
[13] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[14] CHEN R F, WANG Z J. Fast, block lower-upper symmetric Gauss-Seidel scheme for arbitrary grids[J]. AIAA Journal, 2000, 38(12):2238-2245.
[15] 王光学, 张玉伦, 王运涛, 等. BLU-SGS方法在WCNS高阶精度格式上的数值分析[J]. 空气动力学学报, 2015, 33(6):733-739. WANG G X, ZHANG Y L, WANG Y T, et al. Numerical analysis of BLU-SGS method in WCNS high-order scheme[J]. Acta Aerodynamica Sinica, 2015, 33(6):733-739(in Chinese).
[16] VAN LEER B. Towards the ultimate conservation difference scheme II, monoticity and conservation combined in a second order scheme[J]. Journal of Computational Physics, 1974, 14:361-370.
[17] RIVERS M B, DITTBERNER A. Experimental investigation of the NASA common research model (invited):AIAA-2010-4218[R]. Reston:AIAA, 2010.
[18] RIVERS M B, HUNTER C A. Support system effects on the NASA common research model:AIAA-2012-0707[R]. Reston:AIAA, 2012.
[19] RIVERS M B, HUNTER C A, CAMPBELL R L. Further investigation of the support system effects and wing twist on the NASA common research model:AIAA-2012-3209[R]. Reston:AIAA, 2012.
[20] SCLAFANI A J, VASSBERG J C, WINKLER C, et al. DPW-5 analysis of the CRM in a wing-body configuration using structured and unstructured meshes:AIAA-2013-0048[R]. Reston:AIAA, 2013.
/
〈 | 〉 |