CFD软件自动化验证确认云平台设计与实现
Design and realization of automated testing cloud platform for CFD verification and validation
Received date: 2016-03-10
Revised date: 2016-05-23
Online published: 2016-06-12
针对大型计算流体力学(CFD)软件的验证与确认,为了减少人工成本,提高软件质量和开发效率,并适应于未来高性能计算发展的要求,基于云计算思想,提出了自动化测试云平台的解决方案。该方案采用模块化的浏览器/服务器(B/S)网络架构;利用LAMP(Linux+Apache+MySQL+PHP/Python)开发工具;建立了持续集成的专业数据库;构建了涵盖可靠集群监控、复杂作业调度及大规模并行计算功能的云端环境;实现了通过便捷的网络访问,自动加载测试算例、提交集群计算、监测实时进度、自动化后处理、输出分析结果,并提供丰富的实验对比图、误差分析报表和汇总报告等;完成了对大型CFD软件的自动化验证与确认。将该方案应用于某大规模并行计算的CFD软件,验证了该解决方案的可行性与实用性。
陈树生 , 刘丽媛 , 阎超 , 林博希 . CFD软件自动化验证确认云平台设计与实现[J]. 航空学报, 2017 , 38(3) : 120209 -120209 . DOI: 10.7527/S1000-6893.2016.0173
Based on the idea of cloud computing,this paper proposes an automated testing cloud platform solution for large-scale computational fluid dynamics (CFD) software verification and validation. The main objective is to reduce labor costs, improve software quality and development efficiency, and be adapted to high performance computing for future development as well. This platform uses modularized browser/server (B/S) network architecture and LAMP (Linux+Apache+MySQL+PHP/Python) development tools. A continuous integration professional database is established, and a cloud environment is built, covering reliable cluster computing, complicated operation scheduling and massively parallel computing. This solution is able to automatically load test cases, submit cluster computing, monitor real-time process, post-process automatically and export analysis results containing comparisons with detailed experimental data, error analysis and summary reports. This platform has been applied to a large-scale parallel computing CFD software, and the feasibility and practicability of this solution have been verified.
[1] KOGGE P, BERGMAN K, BORKAR S, et al. Exascale computing study:Technology challenges in achieving exascale systems:FA8650-07-C-7724[R]. OH:AFRL, Wright-Patterson Air Force Base, 2008.
[2] AMARASINGHE S, CAMPBELL D, CARLSON W, et al. Exascale software study:Software challenges in extreme scale systems:FA8650-07-C-7724[R]. OH:AFRL, Wright-Patterson Air Force Base, 2009.
[3] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[4] HAGER G, WELLEIN G. Introduction to high performance computing for scientists and engineers[J]. International Journal of Modern Physics A, 2011, 28(2):163-172.
[5] 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5):562-589. YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5):562-589(in Chinese).
[6] OBERKAMPF W L, TRUCANO T G. Verification and validation in computational fluid dynamics[J]. Progress in Aerospace Sciences, 2002, 38(3):209-272.
[7] GOODENOUGH J B, MCGOWAN C L. Software quality assurance:Testing and validation[J]. Proceedings of the IEEE, 1980, 68(9):1093-1098.
[8] OBARA C J, LAMAR J E. Overview of the cranked-arrow wing aerodynamics project international[J]. Journal of Aircraft, 2009, 46(2):355-368.
[9] MARINI M, PAOLI R, GRASSO F, et al. Verification and validation in computational fluid dynamics:The FLOWNET database experience[J]. Bulletin of the JSME, 2002, 45(1):15-22.
[10] CASEY M, WINTERGERSTE T, INNOTEC S. ERCOFTAC special interest group on quality and trust in industrial CFD:Best practice guidelines[R]. Brussels:European Reasearch Community on Flow, Turbulence and Combusion, 2000.
[11] VIDANOVIC N, RASUO B, DAMLJANOVIC D, et al. Validation of the CFD code used for determination of aerodynamic characteristics of nonstandard AGARD-B calibration model[J]. Thermal Science, 2014, 18(4):104-104.
[12] MARVIN J G. A CFD validation roadmap for hypersonic flows:NASA-TM-103935[R]. Washington, D.C.:NASA, 1992.
[13] OBERKAMPF W L, BLOTTNER F G. Issues in computational fluid dynamics code verification and validation[J]. AIAA Journal, 1997, 36(5):687-695.
[14] AIAA. Guide for the verification and validation of computational fluid dynamics simulations:AIAA Guide G-077-1998[S]. Reston:AIAA, 1998.
[15] NPARC. NPARC alliance CFD verification & validation[DB/OL].[2016-02-05]. http://www.grc.nasa.gov/www/wind/valid.
[16] BAI W, LI L. CFD V&V and open benchmark database[J]. Chinese Journal of Aeronautics, 2006, 19(2):160-167.
[17] 邓小刚, 宗文刚, 张来平, 等. 计算流体力学中的验证和确认[J]. 力学进展, 2007, 37(2):279-288. DENG X G, ZONG W G, ZHANG L P, et al. Verification and validation in computational fluid dynamics[J]. Advances in Mechanics, 2007, 37(2):279-288(in Chinese).
[18] 梁益友, 杨永, 朱朝, 等. CFD可信度分析平台WiseCFD[C]//第十二届全国计算流体力学会议论文集. 西安:中国航空工业第六三一研究所, 2004:775-780. LIANG Y Y, YANG Y, ZHU C, et al. Analyze platform of CFD reliability-WiseCFD[C]//12th National Computational Fluid Dynamics Conference. Xi'an:Chinese Aeronautics Computation Technique Research Institute, AVIC, 2004:775-780(in Chinese).
[19] 孙久振. 基于OSGi的CFD可信度分析平台的设计与实现[D]. 西安:西安电子科技大学, 2012:20-28. SUN J Z. The design and application of CFD credibility analysis platform based on OSGi[D]. Xi'an:Xidian University, 2012:20-28(in Chinese).
[20] MELL P M, GRANCE T. The NIST definition of cloud computing[S]. Gaithersbutg, MD:National Insitute of Standard and Technology, 2011.
[21] LEE J, WARE B. Open source development with LAMP:Using Linux, Apache, MySQL and PHP[M]. Boston:Addison-Wesley Professional, 2002:1-9.
[22] MARK L. Python学习手册[M]. 3版. 侯靖, 译. 北京:机械工业出版社, 2009:20. MARK L. Learning Python[M]. 3rd ed. HOU J, translated. Beijing:China Machine Press, 2009:20(in Chinese).
[23] SETTLES G S, FITZPARTRICK T J, BOGDONOFF S M. Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow[J]. AIAA Journal, 1979, 17(6):579-585.
/
〈 | 〉 |