内埋武器高速投放风洞试验技术
收稿日期: 2016-01-25
修回日期: 2016-06-03
网络出版日期: 2016-06-06
基金资助
武器装备预先研究基金
Wind tunnel test technique on high speed weapon delivery from internal weapons bay
Received date: 2016-01-25
Revised date: 2016-06-03
Online published: 2016-06-06
Supported by
Weapon Equipment Fund of Advanced Research
在0.6 m×0.6 m量级亚跨超声速风洞开展了内埋武器弹射试验技术研究。研制的风洞双视角、高亮度光路系统和六自由度(6 DOF)图像分析系统,可获得飞行器内埋武器弹射投放物全轨迹图像和气动参数。此试验技术可独立调节投放物弹射速度和角速度,并可保证弹射速度误差≤5%,角速度误差≤10%,重复率≥95%;新研制的高亮度光源系统使拍摄图像清晰度更高,模型迎角辨识精度≤0.2°,有利于模型运动轨迹分析;光路系统得到合理设计,便于使用双视角技术得到模型运动轨迹及6 DOF数据。新技术已完成亚跨超声速、多体干扰复杂气动力条件下的风洞试验验证,各项参数均达到或优于已有技术指标,并多次为型号试验服务,满足飞行器内埋武器弹射投放风洞试验研究需求。
薛飞 , 金鑫 , 王誉超 , 杨益农 . 内埋武器高速投放风洞试验技术[J]. 航空学报, 2017 , 38(1) : 120114 -120114 . DOI: 10.7527/S1000-6893.2016.0177
The investigation of high speed weapon delivery from internal weapons bay is conducted in a 0.6 m×0.6 m sub-transonic and supersonic wind tunnel. The double-perspective technology, brighter optical path system and image analysis system of six degrees of freedom (6 DOF) are developed to obtain the models' images and the aerodynamic parameters at a high speed separation from carriers' internal weapons bay. The test technology can adjust the velocity and angular velocity independently, and ensure the speed error ≤5%, angular velocity error ≤10%, and repetition rate ≥95%. The data analysis is reliable because the test images are clearer due to using the brighter light source, and the precision of attack angle ≤0.2°. The optical paths are reasonable designed, and the double-perspective technology guarantees that the models' movement path and 6 DOF motion data are acquired. The new technology has been tested in a sub-transonic and supersonic wind tunnel, and has completed a complex multi-body separation test. The parameters are at or better than the existing technical indicators. The technology has served for the model test for many times, and meets the requirements of the wind tunnel test and research on the high speed separation from carriers' internal weapons bay.
[1] BJORGE S T. Flow around an object projected from a cavity into a supersonic freestream:AFIT/GAE/ENY/04-M02[R]. Ohio:Wright-Patterson Air Force Base, 2004.
[2] FLORA T J. Freedrop testing and cfd simulation of ice models from a cavity into supersonic flow:AFIT/GAE/ENY/12-S15[R]. Ohio:Wright-Patterson Air Force Base, 2012.
[3] SHIPMAN J, ARUNAJATESAN S, CAVALLO P A, et al. Flow control for enhanced store separation:AIAA-2007-1239[R]. Reston:AIAA, 2007.
[4] 唐上钦, 黄长强, 翁兴伟. 考虑气动干扰的导弹内埋式发射弹道研究[J]. 弹箭与制导学报, 2013, 33(3):138-142. TANG S Q, HUANG C Q, WENG X W. The study on trajectory of missile separating from cavity with aerodynamic interference considered journal of projectiles[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(3):138-142(in Chinese).
[5] 史爱明, 叶正寅, 杨永年. 内埋式弹舱舱门气动载荷计算分析研究[J]. 航空计算技术, 2007, 37(3):5-6. SHI A M, YE Z Y, YANG Y N. Calculation and analysis for aerodynamic loadsacting on interiorweapon cabin's door[J]. Aeronautical Computing Technique, 2007, 37(3):5-6(in Chinese).
[6] 张俊祥, 冯金富, 于心一. 一种改善内埋式弹舱气流特性的方法[J]. 弹箭与制导学报, 2013, 33(3):165-168. ZHANG J X, FENG J F, YU X Y. A new method for improving cavity flow[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2013, 33(3):165-168(in Chinese).
[7] MERRICK J D. Influence of mach number and dynamic pressure on cavity tones and freedrop trajectories:AFIT-ENY-14-M-36[R]. Ohio:Wright-Patterson Air Force Base, 2014.
[8] BAKER W B, JR, KEEN S, MORGRET C. Validation of weapon separation predictions using F/A-22 flight test results:AIAA-2004-6803[R]. Reston:AIAA, 2004.
[9] FINNEY L P. Investigation of cavity flow effects on store separation trajectories:USNA-1531-2[R]. Annapolis:U.S. Naval Academy, 2010.
[10] JOHNSON R A, STANEK M J, GROVE J E. Store separation trajectory deviations due to unsteady weapons bay aerodynamics:AIAA-2008-0188[R]. Reston:AIAA, 2008.
[11] CARTER R, LIND R. Parametric modeling for store separation aerodynamics using system identication:AIAA-2012-4510[R]. Reston:AIAA, 2012.
[12] STALLINGS R L, JR. Store separation from cavities at supersonic flight speeds[J]. Journal of Spacecraft, 1983, 20(2):129-132.
[13] PURDON M L, HETREED C F, HUDSON M L. F-35 pre-flight store separation analyses:innovative techniques for affordability:AIAA-2009-0102[R]. Reston:AIAA, 2009.
[14] 朱收涛, 曹林平, 封普文. 平飞时内埋导弹弹射分离仿真与研究[J]. 电光与控制, 2012, 19(9):67-71. ZHU S T, CAO L P, FENG P W. Simulation of missile separation from internal weapon bay[J]. Electronics Optics & Control, 2012, 19(9):67-71(in Chinese).
[15] LEE J, CENKO A. Evaluation of the GBU-38 store separation from B-1 aft bay:AIAA-2008-0185[R]. Reston:AIAA, 2008.
[16] 冯必鸣, 聂万胜, 车学科. 初始投放条件对内埋式导弹分离轨迹的影响[J]. 飞行力学, 2009, 27(4):62-65. FENG B M, NIE W S, CHE X K. Effect of initialconditions on separation trajectory of the internal missile[J]. Flight Dynamics, 2009, 27(4):62-65(in Chinese).
[17] 常超, 丁海河. 内埋弹射武器机弹安全分离技术综述[J]. 现代防御技术, 2012, 40(5):67-74. CHANG C, DING H H. Review on missile store safety separation technology of embedded ejection weapons[J]. Modern Defence Technology, 2012, 40(5):67-74(in Chinese).
[18] KEEN S K. Trajectory simulations should match flight tests and other lessons learned in 30 years of store-separation analysis:AIAA-2009-0099[R]. Reston:AIAA, 2009.
[19] KHANA B, KNOWLES K, SADDINGTON A. Computational study of cavity flowfield at transonic speeds:AIAA-2009-00701[R]. Reston:AIAA, 2009.
[20] FEDOROV A, SHALAEV V. PC desktop aerodynamic models for store separation from weapons bay cavities and related vortical processes:(SYA) 37-2[R]. F-92201 Neuilly-Sue-Seine Cedex, France:NATO Research and Technology Organisation, 2003.
[21] 尉建刚, 桑为民, 雷熙薇. 内埋式武器舱的流动及气动特性分析[J]. 飞行力学, 2011, 29(2):29-32. YU J G, SANG W M, LEI X W. Analysis of the flow characteristics and aerodynamic problems in internal weapons bay[J]. Flight Dynamics, 2011, 29(2):29-32(in Chinese).
[22] 李周复. 风洞特种试验技术[M]. 北京:航空工业出版社, 2010:104-113. LI Z F. Wind tunnel special tests technique[M]. Beijing:Aviation Industry Press, 2010:104-113(in Chinese).
/
〈 | 〉 |