电子电器工程与控制

基于终端角度约束的二阶滑模制导律设计

  • 郭建国 ,
  • 韩拓 ,
  • 周军 ,
  • 王国庆
展开
  • 1. 西北工业大学 精确制导与控制研究所, 西安 710072;
    2. 中国运载火箭技术研究院 研发中心, 北京 100076

收稿日期: 2016-03-09

  修回日期: 2016-05-26

  网络出版日期: 2016-06-02

基金资助

国家自然科学基金(61473226)

Second-order sliding-mode guidance law with impact angle constraint

  • GUO Jianguo ,
  • HAN Tuo ,
  • ZHOU Jun ,
  • WANG Guoqing
Expand
  • 1. Institute for Precise Guidance and Control, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Research and Development Center, China Academy of Launch Vehicle Technology, Beijing 100076, China

Received date: 2016-03-09

  Revised date: 2016-05-26

  Online published: 2016-06-02

Supported by

National Natural Science Foundation of China (61473226)

摘要

针对空地导弹具有终端角度约束条件的制导律设计问题,提出了一种在有限时间内稳定的新型二阶滑模制导律。首先,在弹目相对运动学模型基础上,将终端弹道倾角约束转化为终端视线(LOS)角度约束,作为制导系统的终端控制目标。其次,通过选取一种新型二阶滑模面,结合螺旋控制算法的思想,设计了一种二阶滑模变结构制导律,来抑制系统中的不确定性因素,从而满足零化视线角速率和制导系统的终端角度约束条件的要求。采用一种新的Lyapunov函数,基于Lyapunov稳定性理论,严格证明了制导系统在有限时间内的稳定性。最后,对空地导弹制导系统进行数字仿真,通过和一阶传统滑模制导律以及基于超螺旋算法的二阶滑模制导律进行对比分析,验证了所设计的制导律在保证制导精度的同时,更能在有限时间内提高终端约束角度的精度,并且避免了超螺旋算法中参数选取较多的问题。

本文引用格式

郭建国 , 韩拓 , 周军 , 王国庆 . 基于终端角度约束的二阶滑模制导律设计[J]. 航空学报, 2017 , 38(2) : 320208 -320217 . DOI: 10.7527/S1000-6893.2016.0162

Abstract

A new second-order sliding-mode guidance law with finite time stability is proposed for the design of the guidance law for the air-surface missile with impact angle constraint. Based on the relative motion model of the missile and the target, the terminal trajectory inclination angle constraint is transformed to the terminal line of sight (LOS) angle constraint, which is taken as the terminal control goal of the guidance system. In order to satisfy the annihilation of LOS rate and the terminal angle constraint, a second-order sliding mode guidance law is designed by using a new second-order sliding mode surface with twisting control algorithm, which is used to suppress the uncertainty of guiding system. Based on the Lyapunov stability theory, a new Lyapunov function is adopted to verify the strict stability of the guidance system in finite time. The air-surface missile guidance system is simulated numerically. A comparison with the conventional sliding mode guidance law and a second-order sliding mode guidance law using super twisting algorithm shows that the method proposed in this paper can improve the accuracy of terminal angle constraint in finite time and avoid the problem of too many parameters in the super twisting algorithm, and can guarantee the guidance accuracy at the same time.

参考文献

[1] KIM M, KELLY V G. Terminal guidance for impact attitude angle constrained flight trajectories[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, 9(6):852-859.
[2] BYUNG S K, JANG G L, HYUNG S K. Biased PNG law for impact with angular constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1):277-288.
[3] RATNOO A, GHOSE D. Impact angle constrained interception of stationary targets[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6):1816-1821.
[4] RATNOO A, GHOSE D. Impact angle constrained interception of nonstationary nonmaneuvering targets[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):269-275.
[5] CHERRY G. A general explicit optimizing guidance law for rocket-propelled spacecraft[C]//ION Astrodynamics, Guidance and Control Conference. Reston:AIAA, 1964:638.
[6] RYOO C K, CHO H, TAHK M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4):724-732.
[7] RATNOO A, GHOSE D. State dependent riccati equation based guidance law for impact angle constrained trajectories[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(1):320-326.
[8] 张友安, 黄诘, 孙阳平. 带有落角约束的一般加权最优制导律[J]. 航空学报, 2014, 35(3):848-856. ZHANG Y A, HUANG J, SUN Y P. Generalized weighted optimal guidance laws with impact angle constraints[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3):848-856(in Chinese).
[9] ZHANG Q Z, WANG Z B, TAO F. Optimal guidance law design for impact with terminal angle of attack constraint[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(1):243-251.
[10] IAN R M, ANDREY V S. Circular navigation guidance law for precision missile/target engagements[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2):314-320.
[11] ZHANG Z X, LI S H, LUO S. Terminal guidance laws of missile based on ISMC and NDOB with impact angle constraint[J]. Aerospace Science and Technology, 2013, 31(1):30-41.
[12] ZHAO Y, SHENG Y Z, LIU X D. Sliding mode control based guidance law with impact angle constraint[J]. Chinese Journal of Aeronautics, 2014, 27(1):145-152.
[13] KUMAR S R, RAO S, GHOSE D. Nonsingular terminal sliding mode guidance with impact angle constraints[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4):214-223.
[14] WANG X H, WANG J Z. Partial integrated guidance and control with impact angle constraints[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(5):925-936.
[15] YURI B S, IIYA A S, ARIE L. Smooth second-order sliding mdoes:Missile guidance application[J]. Automatica, 2007, 43(8):1470-1476.
[16] HE S M, LIN D F, WANG J. Continuous second-order sliding mode based impact angle guidance law[J]. Aerospace Science and Technology, 2015, 41:199-208.
[17] 窦荣斌, 张科. 基于二阶滑模的再入飞行器末制导律研究[J]. 宇航学报, 2011, 32(10):2109-2114. DOU R B, ZHANG K. Research on terminal guidance for reentry vehicle based on second-order sliding mode control[J]. Journal of Astronautics, 2011, 32(10):2109-2114(in Chinese).
[18] ARIE L. Homogeneity approach to high-order sliding mode design[J]. Automatica, 2005, 41(5):823-830.
[19] ARIE L. Principles of 2-sliding mode design[J]. Automatica, 2007, 43(4):576-586.
[20] EMELYANOV S V, KOROVIN S K, LEVANTOYSKY L V. Second order sliding modes in controlling uncertain systems[J]. Soviet Journal of Computer and System Science, 1986, 24(4):63-68.
[21] YURI O, CHRISTOPHER E, LEONID F, et al. Advances in variable structure and sliding mode control[M]. Berlin:Springer, 2006:127-130.
[22] JAIME A M, OSORIO M. Strict Lyapunov functions for the supertwisting algorithm[J]. IEEE Transactions on Automatic Control, 2012, 57(4):1035-1040.
[23] JESUS P, ENRIC P M, ALEJANDRO V, et al. Stability preserving maps for finite-time convergence:Super-twisting sliding-mode algorithm[J]. Automatica, 2013, 49(2):534-539.
[24] VADIM U. On convergence time and disturbance rejection of supertwisting control[J]. IEEE Transactions on Automatic Control, 2013, 58(8):2013-2017.
[25] ARIE L. Sliding order and sliding accuracy in sliding mode control[J]. International Journal of Control, 1993, 58(6):1247-1263.
[26] EKER. Second-order sliding mode control with experimental application[J]. ISA Transactions, 2010, 49(3):394-405.
[27] MEHDI G, IMAN M, AHMAD R V. Finite-time convergent guidance law based on integral backstepping control[J]. Aerospace Science and Technology, 2014, 39:370-376.
[28] TYAN F. Adaptive PPN guidance law with impact angle constraint[C]//Proceedings of American Control Conference. Piscataway, NJ:IEEE Press, 2013:19-24.
[29] CHEN H, SUN W J, SUN Z D, et al. Second-order sliding mode control of a 2D torsional MEMS micromirror with sidewall electrodes[J]. Journal of Micromechanics and Microengineering, 2012, 23(1):234-239.
[30] JOE H, KIM M, YU S. Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances[J]. Nonlinear Dynamics, 2014, 78(1):183-196.
[31] ANDIRE P, ALEX P. Lyapunov function design for finite-time convergence analysis:"Twisting" controller for second-order sliding mode realization[J]. Automatica, 2009, 45(2):444-448.
[32] 熊少锋, 王卫红, 刘晓东, 等. 考虑导弹自动驾驶仪动态特性的带攻击角度约束制导律[J]. 控制与决策, 2015, 30(4):585-592. XIONG S F, WANG W H, LIU X D, et al. Impact angle guidance law considering missile's dynamics of autopilot[J]. Control and Decision, 2015, 30(4):585-592(in Chinese).

文章导航

/