垂直度误差对复合材料单钉连接性能的影响
收稿日期: 2016-03-03
修回日期: 2016-04-26
网络出版日期: 2016-05-30
基金资助
国家“973”计划(2014CB046504);国家自然科学基金(51375068,51475073)
Effect of perpendicularity error of hole on mechanical behavior of single-lap single-bolt composite joints
Received date: 2016-03-03
Revised date: 2016-04-26
Online published: 2016-05-30
Supported by
National Basic Research Program of China (2014CB046504); National Natural Science Foundation of China (51375068, 51475073)
为揭示连接孔垂直度误差对航空复合材料连接性能的影响规律,对准各向同性碳纤维环氧树脂复合材料板进行了单钉单剪试验研究。以极限承载强度、弦刚度、2%偏移承载强度为指标研究连接孔的倾斜角度、倾斜方向以及螺栓扭矩对接头承载性能的影响规律。试验结果表明:当连接孔倾斜角度从0°增加到4°时,接头弦刚度增大10%~40%,极限承载强度下降9%~12%;连接孔倾斜方向对极限承载强度影响甚微,却可使接头弦刚度产生20%~30%的变化;增加螺栓扭矩可以有效提高极限承载强度,但对接头刚度无明显影响;连接孔倾斜角度越大,则螺栓扭矩的增大对2%偏移承载强度的强化效果越不明显。
高航 , 王建 , 杨宇星 , 刘学术 , 陈磊 , 李汝鹏 . 垂直度误差对复合材料单钉连接性能的影响[J]. 航空学报, 2017 , 38(2) : 420183 -420191 . DOI: 10.7527/S1000-6893.2016.0133
A single-lap single-bolt experimental study of quasi-isotropic lay-ups carbon fiber/epoxy laminates is conducted to assess the effects of perpendicularity error of hole on the bearing properties of composites in aerospace. The effects of the tilt angle, tilt direction of hole and bolt torque on the bearing properties of the joints are investigated by comparing the bearing strength, chord stiffness as well as 2% offset bearing strength. It is found that when the tilt angle of hole increases from 0° to 4°, the chord stiffness of joints increases from 10% to 40%, while the bearing strength of joints decreases by 9%-12%. The bearing strength of joints is not influenced by the tilt direction of hole. However, the chord stiffness changes about 20%-30% as the tilt direction of hole changes. Higher bolt torque can effectively improve the bearing strength of joints, but has little effect on chord stiffness. With the increase of the tilt angle of hole, the effect of the bolt torque on 2% offset bearing strength decreases.
Key words: composites; single-lap joint; bearing strength; perpendicularity error; bolt torque
[1] MCCARTHY M A, MCCARTHY C T, LAWLOR V P, et al. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints:Part I-Model development and validation[J]. Composite Structures, 2005, 71(2):140-158.
[2] IREMAN T. Three-dimensional stress analysis of bolted single-lap composite joints[J]. Composite Structures, 1998, 43(3):195-216.
[3] THOPPUL S D, FINEGAN J, GIBSON R F. Mechanics of mechanically fastened joints in polymer-matrix composite structures-a review[J]. Composites Science and Technology, 2009, 69(3):301-329.
[4] KRETSIS G, MATTHEWS F L. The strength of bolted joints in glass fibre/epoxy laminates[J]. Composites, 1985, 16(2):92-102.
[5] COOPER C, TURVEY G J. Effects of joint geometry and bolt torque on the structural performance of single bolt tension joints in pultruded GRP sheet material[J]. Composite Structures, 1995, 32(1):217-226.
[6] KIRAL B G. Effect of the clearance and interference-fit on failure of the pin-loaded composites[J]. Materials & Design, 2010, 31(1):85-93.
[7] KELLY G, HALLSTRÖM S. Bearing strength of carbon fibre/epoxy laminates:Effects of bolt-hole clearance[J]. Composites Part B:Engineering, 2004, 35(4):331-343.
[8] MCCARTHY M A, LAWLOR V P, STANLEY W F, et al. Bolt-hole clearance effects and strength criteria in single-bolt, single-lap, composite bolted joints[J]. Composites Science and Technology, 2002, 62(10):1415-1431.
[9] MCCARTHY M A, LAWLOR V P, STANLEY W F. An experimental study of bolt-hole clearance effects in single-lap, multibolt composite joints[J]. Journal of Composite Materials, 2005, 39(9):799-825.
[10] MCCARTHY M A, MCCARTHY C T, STANLEY W F. Bolt-hole clearance effects in composite joints[M]. Composite Joints and Connections:Principles, Modelling and Testing, 2011:112.
[11] WANG H S, HUNG C L, CHANG F K. Bearing failure of bolted composite joints. Part I:Experimental characterization[J]. Journal of Composite Materials, 1996, 30(12):1284-1313.
[12] KHASHABA U A, SALLAM H E M, AL-SHORBAGY A E, et al. Effect of washer size and tightening torque on the performance of bolted joints in composite structures[J]. Composite Structures, 2006, 73(3):310-317.
[13] 张岐良, 曹增强. 复合材料螺接性能的影响因素研究[J]. 航空学报, 2012, 33(4):755-762. ZHANG Q L, CAO Z Q. Study on factors influencing the performance of composite bolted connections[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4):755-762(in Chinese).
[14] 裴旭明, 陈五一, 张东初, 等. 制孔工艺对紧固孔加工精度的影响[J]. 机械科学与技术, 2011, 30(4):613-617. PEI X M, CHEN W Y, ZHANG D C, et al. Influence of drilling processes on the machining accuracy of fastener holes[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(4):613-617(in Chinese).
[15] ZHANG J, LIU F, ZHAO L, et al. A progressive damage analysis based characteristic length method for multi-bolt composite joints[J]. Composite Structures, 2014, 108:915-923.
[16] LI X, GAO W, LIU W. Post-buckling progressive damage of CFRP laminates with a large-sized elliptical cutout subjected to shear loading[J]. Composite Structures, 2015, 128:313-321.
[17] ASTM. Standard test method for bearing response of polymer matrix composite laminates:ASTM D5961/D5961M-13[S]. Philadelphia:American Society for Testing and Materials, 2013.
[18] CHISHTI M, WANG C H, THOMSON R S, et al. Experimental investigation of damage progression and strength of countersunk composite joints[J]. Composite Structures, 2012, 94(3):865-873.
[19] ZHAI Y, LI D, LI X, et al. An experimental study on the effect of bolt-hole clearance and bolt torque on single-lap, countersunk composite joints[J]. Composite Structures, 2015, 127:411-419.
/
〈 | 〉 |