反潜直升机吊放声纳水面舰艇编队尾后锯齿形法搜潜
收稿日期: 2016-02-23
修回日期: 2016-05-17
网络出版日期: 2016-05-30
基金资助
国家社会科学基金(14GJ003-154)
Antisubmarine helicopter searching stern of ship formation adopting saw-tooth method with dipping sonar
Received date: 2016-02-23
Revised date: 2016-05-17
Online published: 2016-05-30
Supported by
National Social Science Foundation of China (14GJ003-154)
针对水面舰艇编队尾后方向的潜艇威胁,研究反潜直升机使用吊放声纳搜潜中的警戒扇面、兵力需求、参数决策等问题。通过分析锯齿形法特点、吊放声纳搜潜过程,建立了多机舰艇编队尾后搜潜的警戒扇面定量计算模型。研究了齿形法相邻探测点间距系数、搜索速度等制约因素,探索了吊放声纳作用距离与潜艇航速的定量关系,给出了已探测区等效圆半径的计算方法。仿真计算了舰艇编队尾后搜潜中实际对潜警戒扇面、最优间距系数、不同任务要求下的兵力需求。结果表明:配置2架直升机于舰艇编队尾后15海里处,可建立80.9°的对潜警戒扇面;齿形法最佳间距系数介于1.1~1.3之间。
罗木生 , 曾家有 , 侯学隆 . 反潜直升机吊放声纳水面舰艇编队尾后锯齿形法搜潜[J]. 航空学报, 2017 , 38(1) : 320154 -320154 . DOI: 10.7527/S1000-6893.2016.0156
The warning sector, demand of force and parameter decisions in helicopter antisubmarine search for threat from stern of ship formation with dipping sonar are investigated. The process of antisubmarine search with dipping sonar and the features of saw-tooth method are analyzed. A quantitative model for warning sector is built for multiple helicopters antisubmarine search at stern of ship formation. The influencing factors of saw-tooth method are analyzed, such as search velocity, and the spacing coefficient of adjacent detecting points. The relationship between submarine velocity and detection range of dipping sonar is investigated. The method for calculating equivalent circle radius of the detected area is provided. The actual warning sector against submarine, the optimum spacing coefficient, and the force demand when antisubmarine helicopters search the stern of ship formation using dipping sonar are simulated. Results show that deploying 2 helicopters to 15 n miles at the stern of ship formation could cover warning sector of 80.9°, and the optimum spacing coefficient is between 1.1 and 1.3.
[1] 罗木生, 姜青山, 侯学隆. 反潜直升机舰艇编队尾后截击反潜建模[J]. 电光与控制, 2012, 19(12):6-9. LUO M S, JIANG Q S, HOU X L. Modeling of helicopter stern interception antisubmarine for surface ship formation[J]. Electronics Optics & Control, 2012, 19(12):6-9(in Chinese).
[2] SCHERER S D. Game-theoretic anti-submarine warfare mission planner[D]. Monterey, CA:Naval Postgraduate School, 2009.
[3] MANVI S S, MANJULA R B. Issues in underwater acoustic sensor networks[J]. International Journal on Computer and Electrical Engineering, 2011, 3(1):101-111.
[4] SIMAKOV S. Localisation in airborne multistatic sonars[J]. IEEE Journal of Oceanic Engineering, 2008, 3(3):278-288.
[5] KROUT D W, FOX W J L, EL-SHARKAWI M A. Probability of target presence for multi-static sonar ping sequencing[J]. IEEE Journal of Oceanic Engineering, 2009, 34(4):603-609.
[6] 郭传福, 王洪胜, 曲延明. 驱护舰编队使用拖曳声纳反潜[J]. 舰船电子工程, 2015, 35(2):46-48. GUO C F, WANG H S, QU Y M. Research of configuaration of ship formation using towed sonar to search submarine[J]. Ship Electronic Engineering, 2015, 35(2):46-48(in Chinese).
[7] 罗木生,姜青山,沈培志,等. 反潜直升机侧翼伴随巡逻搜潜建模与仿真[J]. 航空学报, 2015, 36(3):921-928. LUO M S, JIANG Q S, SHEN P Z, et al. Modeling and simulation of antisubmarine helicopter flank-accompany patrol search[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):921-928(in Chinese).
[8] CESAR J R. A reactive target active ASW sonar search tactical decision aid[D]. Monterey, CA:Naval Postgraduate School, 1996.
[9] OZOLS S, FEWELL M P, THREDGOLD J M. Track-initiation probability for multistatic sonar fields:DSTO-TN-1021[R]. Edinburgh:Defence Science and Technology Organization, 2011.
[10] FIALKOWSKI J M, GAUSS R. Methods for identifying and controlling sonar clutter[J]. IEEE Journal of Oceanic Engineering, 2011, 35(2):330-354.
[11] 罗木生, 姜青山, 侯学隆. 正态圆分布下的双机吊放声纳扩展方形搜潜[J]. 电光与控制, 2012, 19(7):1-4. LUO M S, JIANG Q S, HOU X L. Modeling of search submarine distributed in a circular bivariate normal distribution by two helicopters in extended squared search using dipping sonar[J]. Electronics Optics & Control, 2012, 19(7):1-4(in Chinese).
[12] 吴芳, 杨日杰. 多机吊放声纳应召搜潜建模与仿真[J]. 航空学报, 2009, 30(10):1948-1953. WU F, YANG R J. Model building and simulation based on definite second time submarine search by multi-aircraft dipping sonar[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1948-1953(in Chinese).
[13] 戚学文, 严建钢, 谢宇, 等. 直升机吊放声纳应召搜潜模[J]. 火力与指挥控制, 2014, 39(3):417-420. QI X W, YAN J G, XIE Y, et al. Study on antisubmarine searching models of dipping sonar carried by helicopters[J]. Fire Control & Command Control, 2014, 39(3):417-420(in Chinese).
[14] 白晶, 韩亮. 舰载直升机吊声的搜潜方法探讨[J]. 北京航天航空大学学报, 2007, 33(3):282-285. BAI J, HAN L. Search method of dipping sonar on ship borne antisubmarine aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(3):282-285(in Chinese).
[15] 吴芳, 杨日杰, 徐俊艳. 对潜的吊放声纳应召搜索技术仿真研究[J]. 系统仿真学报, 2009, 21(13):3989-3992. WU F, YANG R J, XUE J Y. Simulation research on methods of definite second time search of dipped sonar against submarine[J]. Journal of System Simulation, 2009, 21(13):3989-3992(in Chinese).
[16] 罗光成, 张丹. 反潜直升机锯齿形检查搜潜建模与仿真技术研究[J]. 电子测量技术, 2011, 34(10):34-36. LUO G C, ZHANG D. Modeling and simulation of the anti-submarine helicopter based on serrated check searching[J]. Electronic Measurement Technology, 2011, 34(10):34-36(in Chinese).
[17] 罗木生, 侯学隆, 徐君明. 基于Vega Prime的直升机反潜机动三维视景仿真[J]. 火力与指挥控制, 2012, 37(8):143-146. LUO M S, HOU X L, XU J M. 3D scene simulation of helicopter antisubmarine search based on vega prime[J]. Fire Control & Command Control, 2012, 37(8):143-146(in Chinese).
[18] MARTIN J. Multiplying the effectiveness of helicopter ASW sensors[J]. Sea Technology, 2006, 47(11):33-36.
[19] 罗木生, 姜青山, 侯学隆. 直升机使用吊声应召反潜兵力需求仿真[J]. 系统仿真学报, 2012, 24(6):1277-1281. LUO M S, JIANG Q S, HOU X L. Simulation of the optimum helicopter force in definite second time submarine search by dipping sonar[J]. Journal of System Simulation, 2012, 24(6):1277-1281(in Chinese).
[20] DONALD R D, HEMSTETER K P. GRASP multi-sensor search tactics against evading targets[R]. Washington, D.C.:Naval Research Laboratory, 2002.
/
〈 | 〉 |