电子电器工程与控制

时延遥操作系统的非对称双通道波变量补偿法

  • 戴沛 ,
  • 黄攀峰 ,
  • 鹿振宇 ,
  • 刘正雄
展开
  • 1. 西北工业大学 航天学院智能机器人研究中心, 西安 710072;
    2. 西北工业大学 航天飞行动力学重点实验室, 西安 710072

收稿日期: 2016-03-16

  修回日期: 2016-05-23

  网络出版日期: 2016-05-27

基金资助

国家自然科学基金(11272256,61005062,60805034)

Asymmetric two channel wave variable compensation method for teleoperation system with time delay

  • DAI Pei ,
  • HUANG Panfeng ,
  • LU Zhenyu ,
  • LIU Zhengxiong
Expand
  • 1. Research Center for Intelligent Robotics, School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2016-03-16

  Revised date: 2016-05-23

  Online published: 2016-05-27

Supported by

National Natural Science Foundation of China (11272256, 61005062, 60805034)

摘要

为保证遥操作系统在时延条件下的稳定性,以及减少传统波变量方法的跟踪误差,提出一种非对称双通道波变量补偿法。该方法在前向通道波变量补偿法的基础上,采用能量整定器对反向通道的波变量进行补偿。通过调节波阻抗、滤波器和能量整定器的相关参数可以充分保证遥操作系统的稳定性和跟踪性能。实验结果表明该方法在保证时延遥操作系统稳定性的基础上,速度跟踪平均误差比传统波变量法减少70%以上,力跟踪平均误差比前向通道波变量补偿法减少60%以上。为了比较不同时延下本方法的效果,设计时延分别为3 s和0.6 s的2种实验。结果表明本方法在不同时延条件下均可以取得较好的效果。

本文引用格式

戴沛 , 黄攀峰 , 鹿振宇 , 刘正雄 . 时延遥操作系统的非对称双通道波变量补偿法[J]. 航空学报, 2017 , 38(2) : 320225 -320235 . DOI: 10.7527/S1000-6893.2016.0158

Abstract

In order to guarantee system stability in time delayed teleoperation and reduce tracking errors of traditional wave variable method, the asymmetric two channel wave variable compensation method is proposed. This method compensates the wave variable in backward communication channel by energy regulator based on the forward wave variable compensation method. By tuning the parameters of wave impedance, and the cut off frequency of wave filter and energy regulator, the stability and tracking performance of teleoperation system can be guaranteed. By experiments, it is revealed that this method reduces over 70% average velocity tracking errors compared with the traditional wave variable method and reduces over 60% average force tracking errors compared with the forward wave variable compensation method in the condition of ensuring system stability. For comparison of performance in different time delays, we design two types of experiments with time delay of 3 s and 0.6 s. The results reveal that this method has good performance in the conditions of different time delays.

参考文献

[1] 张斌, 黄攀峰, 刘正雄, 等. 基于虚拟夹具的交互式空间机器人遥操作实验[J]. 宇航学报, 2011, 32(2):446-450. ZHANG B, HUANG P F, LIU Z X, et al. An interactive space robot teleoperation experiment based on virtual fixtures[J]. Journal of Astronautics, 2011, 32(2):446-450(in Chinese).
[2] 丁炳源, 黄攀峰, 刘正雄, 等. 速度型虚拟夹具辅助空间遥操作技术研究[J]. 航空学报, 2012, 34(6):1436-1444. DING B Y, HUANG P F, LIU Z X, et al. Research on space teleoperation technology assisted with velocity-based virtual fixture[J]. Acta Aeronautica et Astronautica Sinica, 2012, 34(6):1436-1444(in Chinese).
[3] 田志宇, 黄攀峰, 刘正雄. 辅助空间遥操作的虚拟管道设计与实现[J]. 宇航学报, 2014, 35(7):834-842. TIAN Z Y, HUANG P F, LIU Z X. Design and implementation of virtual tube as an aid for space teleoperation[J]. Journal of Astronautics, 2014, 35(7):834-842(in Chinese).
[4] OBOE R, FIORINI P. A design and control environment for internet-based telerobotics[J]. The International Journal of Robotics Research, 1998, 17(4):433-449.
[5] 王永, 谢圆, 周建亮. 空间机器人大时延遥操作技术研究综述[J]. 宇航学报, 2010, 31(2):299-306. WANG Y, XIE Y, ZHOU J L. A researsh survey on teleoperation of space robot through time delay[J]. Journal of Astronautics, 2010, 31(2):299-306(in Chinese).
[6] LI Z J, XIA Y Q, SU C Y. Intelligent networked teleoperation control[M]. Berlin:Springer, 2015:182-190.
[7] LI Z J, XIA Y Q, SUN F C. Adaptive fuzzy control of multilateral cooperative teleoperation for multiple robotic manipulators under random time delays[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(2):437-450.
[8] LI Z J, CAO X Q, YANG Y, et al. Bilateral teleoperation of holonomic constrained robotic system with time-varying delays[J]. IEEE Transactions on Instrument & Measurement, 2013, 62(4):752-765.
[9] LI Z J, CAO X Q, DING N. Adaptive fuzzy control for synchronization of nonlinear teleoperators with stochastic time-varying communication delays[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(4):745-757.
[10] NIEMEYER G, SLOTINE J J E. Telemanipulation with time delays[J]. The International Journal of Robotics Research, 2004, 23(9):873-890.
[11] NIEMEYER G, SLOTINE J J E. Stable adaptive teleoperation[J]. IEEE Journal of Oceanic Engineering, 1991, 16(1):152-162.
[12] BATE L, COOK C D, LI Z. Reducing wave-based teleoperator reflections for unknown environments[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2):392-397.
[13] YE Y, LIU P X. Improving trajectory tracking in wave-variable-based teleoperation[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(2):321-326.
[14] LI H, KAWASHIMA K. Achieving stable tracking in wave-variable-based teleoperation[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(5):1574-1582.
[15] 张永林, 宋爱国. 广义波变量遥操作系统的透明性分析[J]. 宇航学报, 2008, 29(2):688-693. ZHANG Y L, SONG A G. Analysis of transparency in generalized wave based teleoperation[J]. Journal of Astronautics, 2008, 29(2):688-693(in Chinese).
[16] 崔艳, 居鹤华. 基于波变量的时延双边遥操作系统设计[J]. 计算机测量与控制, 2012, 20(5):1324-1325. CUI Y, JU H H. Design of time-delayed bilateral teleoperation system based on adjusted wave variables[J]. Computer Measurement & Control, 2012, 20(5):1324-1325(in Chinese).
[17] NIEMEYER G. Using wave variables in time delayed force reflecting teleoperation[D]. Cambridge:Massachusetts Institute of Technology, 1996:162-167.
[18] 王久和. 无源控制理论及其应用[M]. 北京:电子工业出版社, 2010:14-15. WANG J H. Passivity-based control theory and its applications[M]. Beijing:Publishing House of Electronics Industry, 2010:14-15(in Chinese).
[19] SLOTINE J J E, LI W. Applied nonlinear control[M]. Englewood Cliffs, NJ:Prentice-Hall, 1991.
[20] HU L Y, LIU X P, LIU G P. The wave-variable teleoperator with improved trajectory tracking[C]//20108th IEEE International Conference on Control and Automation (ICCA). Piscataway, NJ:IEEE Press, 2010:322-327.
[21] CHING H, BOOK W J. Internet-based bilateral teleoperation based on wave variable with adaptive predictor and direct drift control[J]. Journal of Dynamic Systems, Measurement and Control, 2006, 128(1):86-93.
[22] RAJU G J, VERGHESE G C, SHERIDAN T B. Design issues in 2-port network models of bilateral remote manipulation[C]//Proceedings of the 1989 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE Press, 1989:1316-1321.
[23] TANNER N A, NIEMEYER G. Practical limitations of wave variable controllers in teleoperation[C]//Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics. Piscataway, NJ:IEEE Press, 2004, 1:25-30.
[24] TANNER N A, NIEMEYER G. Improving perception in time-delayed telerobotics[J]. The International Journal of Robotics Research, 2005, 24(8):631-644.
[25] DE PASCALE M, DE PASCALE G, PRATTICHIZZO D, et al. The Haptik Library, a component based architecture for haptic devices access[C]//Proceedings of EuroHaptics, 2004:365-370.

文章导航

/