基于反预警的反拦截中段规避突防策略
收稿日期: 2015-12-03
修回日期: 2016-04-07
网络出版日期: 2016-04-13
基金资助
上海航天科技创新基金(SAST201312)
Anti-warning-based anti-interception avoiding penetration strategy in midcourse
Received date: 2015-12-03
Revised date: 2016-04-07
Online published: 2016-04-13
Supported by
Shanghai Aerospace Science and Technology Innovation Fund (SAST201312)
为了充分挖掘多脉冲机动突防的潜力,提高弹道导弹中段机动突防能力,提出一种基于反预警的反拦截中段规避突防策略。首先,分别以脉冲点火点及点火间隔为搜索节点与步长,视敌方拦截系统为威胁源并转化为航迹规划中的约束条件,将多脉冲弹道的设计问题转化成无人机避障航迹的规划问题。然后,在综合考虑敌方探测系统延迟和拦截系统部署及性能的基础上,选取最优的脉冲点火参数。最后,研究了脉冲增量和探测系统延迟对多脉冲规划的影响。仿真结果表明:所提出的突防策略通过多脉冲机动增加敌方预测误差,使其不能收敛与准确预警,当敌方的预测误差收敛且准确预警时,导弹却处于其拦截范围之外,无法进行拦截;能根据获取的最新战场信息,在线下60 s内设计出一条多脉冲突防弹道。此外,还能根据任务的需求,提高(降低)导弹的飞行高度、平均飞行速度,缩短(增加)20%~35%的飞行时间。
周啟航 , 刘延芳 , 齐乃明 , 闫俊丰 . 基于反预警的反拦截中段规避突防策略[J]. 航空学报, 2017 , 38(1) : 319922 -319922 . DOI: 10.7527/S1000-6893.2016.0116
An anti-warning-based anti-interception avoiding penetration strategy is proposed for fully exploiting potential of the multi-pulse maneuvering and improving the midcourse penetration ability of ballistic missiles. With the interception system being regarded as threats and transformed into the constraint conditions, the multi-pulse trajectory design is turned into an obstacle avoidance path planning for the unmanned aerial vehicle, wherein the pulse ignition point and interval are regarded as the search nodes and step, respectively. The optimal ignition parameters are selected based on a comprehensive consideration of the detection system delay and the performance and deployment of the interception system. Influence of pulse increment and system delay on multi-pulse trajectory is studied Simulation results show that the proposed strategy can damage the convergence of enemy's prediction algorithm by multi-pulse maneuvering, and the accuracy of hostile warning results is thus reduced. When the enemy's prediction error sufficiently converges and the hostile warning is accurate enough, the missile is already being out of the range of interception. According to the latest information in battlefield, an optimal multi-pulse trajectory can be designed offline in 60 s, which can increase (decrease) the flight altitude and the average flight speed, and shorten (prolong) the flight time by 20%-35%.
[1] 鲜勇, 李少朋, 雷刚, 等. 弹道导弹中段机动突防技术研究综述[J]. 飞航导弹, 2015, 18(9):43-46. XIAN Y, LI S P, LEI G, et al. Discussion of ballistic missile penetrating missile defense system[J]. Aerodynamic Missile Journal, 2015, 18(9):43-46(in Chinese).
[2] 周啟航, 张刘, 霍明英, 等. 弹道导弹中段突防弹道设计与验证[J]. 光学精密工程, 2015, 36(9):2645-2655. ZHOU Q H, ZHANG L, HUO M Y. et al. Ballistic missile midcourse penetration trajectory design and validation[J]. Optics and Precision Engineering, 2015, 36(9):2645-2655(in Chinese).
[3] 鲜勇, 李少朋, 李振华, 等. 基于梯度粒子群算法的纵横向机动跳跃弹道设计及优化[J]. 弹道学报, 2015, 27(3):1-6. XIAN Y, LI S P, LI Z H, et al. Design and optimization of vertical wavy and crosswise maneuvering trajectory based on grads particle swarm algorithm[J]. Journal of Ballistics, 2015, 27(3):1-6(in Chinese).
[4] 李广华, 张洪波, 汤国建. 高超声速滑翔飞行器典型弹道特性分析[J]. 宇航学报, 2015, 46(4):397-403. LI G H, ZHANG H B, TANG G J. Typical trajectory characteristics of hypersonic glide vehicle[J]. Journal of Astronautics, 2015, 46(4):397-403(in Chinese).
[5] 鲜勇, 刘炳琪, 王安民, 等. 变射面弹道横向转弯飞行程序的设计与优化[J]. 弹道学报, 2014, 26(4):30-35. XIAN Y, LIU B Q, WANG A M, et al. Design and optimization of lateral turning flight programon changeable launching plane trajectory[J]. Journal of Ballistics, 2014, 26(4):30-35(in Chinese).
[6] 明超, 孙瑞胜, 白宏阳, 等. 基于hp自适应伪谱法的多脉冲导弹弹道优化设计[J]. 固体火箭技术, 2015, 38(2):151-155. MING C, SUN R S, BAI H Y, et al. Optimizing design of trajectory for multiple-pulse missiles based on hp-adaptive pseudo-spectral method[J]. Journal of Solid Rocket Technology, 2015, 38(2):151-155(in Chinese).
[7] 邓逸凡, 李超兵, 王志刚. 一种基于轨道要素形式终端约束的航天器空间变轨迭代制导算法[J]. 航空学报, 2015, 36(6):1975-1982. DENG Y F, LI C B, WANG Z G. An iterative guidance algorithm using orbit element as terminal constraints for spacecraft orbit transfer[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):1975-1982(in Chinese).
[8] 冯令兵, 葛致磊, 李宪强, 等. 弹道导弹被动段最优脉冲变轨方法[J]. 指挥控制与仿真, 2014, 36(2):114-117. FENG L B, GE Z L, LI X Q, et al. A study on the ballistic missile's optimal impulse orbit transfer in the passive ballistic curve[J]. Command Control Simulation, 2014, 36(2):114-117(in Chinese).
[9] GILLIS M P I. Optimal mid-course modication of ballistic missile trajectories:Air Force Institute of Technology Report[R]. Washington, D.C.:Wright-Patterson Air Force Base, 1975.
[10] DRUCKMANN E, BENASHER J Z. Optimal in-flight trajectory modifications for ballistic missiles and free rockets[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(2):462-470.
[11] GUO Y, YAO Y, WANG S, et al. Maneuver control strategies to maximize prediction errors in ballistic middle phase[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(4):1225-1234.
[12] GUO Y, YAO Y, WANG S, et al. Maneuver strategy of evader considering detection system[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference. Reston:AIAA, 2011.
[13] 张广明, 高普云, 唐乾刚. 导弹在被动段突防的脉冲式异面变轨方法[J]. 宇航学报, 2008, 29(1):89-94. ZHANG G M, GAO P Y, TANG Q G. The method of the impulse trajectory transfer in a different plane for the ballistic missile penetrating missile defense system in the passive ballistic curve[J]. Journal of Astronautics, 2008, 29(1):89-94(in Chinese).
[14] 高普云, 张广明, 唐乾刚, 等. 导弹在被动段突防的脉冲式轴向加速方法[J]. 宇航学报, 2008, 29(4):1126-1130. GAO P Y, ZHANG G M, TANG Q G, et al. The method of increasing velocity along its original velocity direction by the impulse firing for the ballistic missile to penetrate the anti-missile system in the passive ballistic curve[J]. Journal of Astronautics, 2008, 29(4):1126-1130(in Chinese).
[15] 高普云, 张广明, 冯志刚, 等. 基于脉冲点火弹头空间机动的被动段弹道设计方法和数值仿真[J]. 宇航学报, 2009, 30(3):884-889. GAO P Y, ZHANG G M, FENG Z G, et al. The method of the trajectory design and numerical stimulation of the missile maneuvers in space based on the impulse firing in the passive curve[J]. Journal of Astronautics, 2009, 30(3):884-889(in Chinese).
[16] 张斌, 任军学, 王一白, 等. 导弹在被动段轴向加速变轨弹道设计与优化[J]. 北京航空航天大学学报, 2010, 21(6):650-653. ZHANG B, REN J X, WANG Y B. Design and optimization on trajectory of increasing velocity along its original velocity direction by impulse firing for ballistic missile to penetrate anti-missile system in passive ballistic curve[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 21(6):650-653(in Chinese).
[17] 赵秀娜. 机动弹头的智能规避策略研究[D]. 长沙:国防科学技术大学, 2006:10-25. ZHAO X N. The intelligent evasive strategy of the maneuver missiles[D]. Changsha:National University of Defense Technology, 2006:10-25(in Chinese).
[18] 丁明跃, 郑昌文, 周成平, 等. 无人飞行器航迹规划[M]. 北京:电子工业出版社, 2009:49-50. DING M Y, ZHENG C W, ZHOU C P, et al. Flight path planning for unmanned aerial vehicles[M]. Beijing:Electronics Industry Press, 2009:49-50(in Chinese).
[19] 张广明, 高普云, 唐乾刚, 等. 弹道导弹在被动段突防的平面脉冲式变轨方法[J]. 弹道学报, 2008, 34(3):83-86. ZHANG G M, GAO P Y, TANG Q G, et al. The method of the impulse trajectory transfer in a plane for the ballistic missile breaking through a defense line in the passive ballistic curve[J]. Journal of Ballistics, 2008, 34(3):83-86(in Chinese).
[20] 贾沛然, 陈克俊, 何力. 远程火箭弹道学[M]. 长沙:国防科技大学出版社, 1993:173-199. JIA P R, CHEN K J, HE L. Long-range rocket ballistics[M]. Changsha:National University of Defense Technology Press, 1993:173-199(in Chinese).
[21] 刘暾, 赵钧. 空间飞行器动力学[M]. 哈尔滨:哈尔滨工业大学出版社, 2003:62-68. LIU D, ZHAO J. Aero spacecraft dynamics[M]. Harbin:Harbin Institute of Technology Press, 2003:62-68(in Chinese).
[22] 赵钧. 航天器轨道动力学[M]. 哈尔滨:哈尔滨工业大学出版社, 2011:42-87. ZHAO J. Orbital dynamics ofspacecraft[M]. Harbin:Harbin Institute of Technology Press, 2011:42-87(in Chinese).odication of Ballistic Missile Trajectories, ” Air Force Inst. of Technology Report[S]. AD-A019333, Wright-Patterson Air Force Base, OH, 1975.
[10]Druckmann E, Ben-Asher J Z.Optimal In-Flight Tra-jectory Modifications for Ballistic Missiles and Free Rockets[J].Journal of Guidance, Control, and Dynam-ics, 2012, 35(2):462-470
[11]Guo Y, Yao Y, Wang S, et al.Maneuver Control Strate-gies to Maximize Prediction Errors in Ballistic Middle Phase[J].Journal of Guidance, Control, and Dynamics, 2013, 36(4):1225-1234
[12]Guo Y, Yao Y, Wang S, et al.Maneuver Strategy of Evader Considering Detection System[C].AIAA Guidance, Navigation, and Control Conference 08 - 11 Au-gust 2011, Portland, Oregon
[13]张广明, 高普云, 唐乾刚.导弹在被动段突防的脉冲式异面变轨方法[J].宇航学报, 2008, 29(1):89-94
[14]高普云, 张广明, 唐乾刚, 等.导弹在被动段突防的脉冲式轴向加速方法[J].宇航学报, 2008, 29(4):1126-1130
[15]高普云, 张广明, 冯志刚, 等.基于脉冲点火弹头空间机动的被动段弹道设计方法和数值仿真[J].宇航学报, 2009, 30(3):884-889
[16]张斌, 任军学, 王一白, 等. 弹道导弹在被动段轴向加速变轨弹道设计与优化[J]. 北京航空航天大学学报, 2010,21(6): 650-653.
[17]赵秀娜.机动弹头的智能规避策略研究[D].国防科学技术大学, 2006.
[18]丁明跃,郑昌文,周成平,等 无人飞行器航迹规划[M].电子工业出版社, 2009.49-50.
[19]贾沛然, 陈克俊, 何力.远程火箭弹道学[M]. 国防科技大学出版社, 1993.173-199
[20]刘暾,赵钧.空间飞行器动力学[M].哈尔滨:哈尔滨工业大学出版社,2003: 62-68
[21]赵钧.航天器轨道动力学[M].哈尔滨:哈尔滨工业大学出版社,2011: 42-87
/
〈 | 〉 |