机身加筋壁板复合加载损伤容限性能试验
收稿日期: 2016-01-21
修回日期: 2016-03-30
网络出版日期: 2016-04-07
Damage tolerance test of stiffened fuselage panel under complex load
Received date: 2016-01-21
Revised date: 2016-03-30
Online published: 2016-04-07
陈安 , 魏玉龙 , 廖江海 , 董登科 , 王旭 . 机身加筋壁板复合加载损伤容限性能试验[J]. 航空学报, 2017 , 38(1) : 420093 -420093 . DOI: 10.7527/S1000-6893.2016.0106
To investigate the behaviors of the crack propagation and characteristics of the residual strength of the stiffened fuselage panel, a equipment is designed and manufactured based on boundary requirements for internal pressure and axial tension loads of the panel. Static test results prove the rationality and validity of the test. The results of damage tolerance test show that longitudinal crack progresses along nearly straight line. The left and the right cracks are symmetrical. The crack propagation is slow when the crack length is less than 80 mm, which can be detected easily. Longitudinal crack propagating unstably leads to eventual destruction in the farthest frame shown as the T-shaped crack failure mode. The results can provide data for damage tolerance design and fuselage structure assessment.
[1] PITT S, JONES R. Compliance measurements for assessing structural integrity[J]. Engineering Failure Analysis, 2001(8):371-397.
[2] 牛春匀. 实用飞机结构工程设计[M]. 北京:航空工业出版社, 2008:118-121. NIU C Y. Airframe structure design[M]. Beijing:Aviation Industry Press, 2008:118-121(in Chinese).
[3] 王志瑾, 姚卫星. 飞机结构设计[M]. 北京:国防工业出版社, 2004:152-153. WANG Z J, YAO W X. Aircraft structure design[M]. Beijing:National Defence Industrial Press, 2004:152-153(in Chinese).
[4] JAMES H, STARNES J, DAMODAR R, et al. Experimental verification of the analytical methodology to predict the residual strength of metallic shell structure:VA 23681-2199[R]. Washington, D. C.:NASA, 1999.
[5] SWIFT T. Important considerations in commercial aircraft damage tolerance[J]. International Journal of Vehicle Design, 1986, 7(3-4):264-287.
[6] MUNROE J, WILKINS K, GTUBER M. Integral airframe structures (IAS)-validated feasibility study of integrally stiffened metallic fuselage panels for reducing manufacturing cost:NASA/CR-2000-209337[R]. Washington, D. C.:NASA, 2000.
[7] RETTIT R G, WANG J J, TOH C. Validated feasibility study of integrally stiffened metallic fuselage panels for reducing manufacturing costs:NASA/CR-2000-209342[R]. Washington, D. C.:NASA, 2000.
[8] HAHN T, YANG M J, SUH S, et al. Damage tolerance and durability of selectively stitched, stiffened panels:DOT/FAA/AR-03/46[R]. Washington, D. C.:FAA, 2003.
[9] FURUKAWA C H, BUCALM M L, MAZELLA I J G. On the finite element modeling of fatigue crack growth in pressurized cylindrical shells[J]. International Journal of Fatigue, 2009, 31(4):629-635.
[10] FOSSATI M, COLOMBO D, MANRS A, et al. Numerical modelling of crack growth profiles in integral skin-stringer panels[J]. Engineering Fracture Mechanics, 2011(78):1341-1352.
[11] NESTERENKO G I. Comparison of damage tolerance of integrally stiffened and riveted structures[C]//ICAS 2000 Congress, 2000.
[12] 李亚智, 张向. 整体加筋壁板的破损安全特性与断裂控制分析[J]. 航空学报, 2006, 27(5):842-846. LI Y Z, ZHANG X. An analysis of fail-safety and fracture control of integrally stiffened panels[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5):842-846(in Chinese).
[13] 殷之平, 黄其青, 傅祥炯. 变厚度壁板损伤容限特性研究[J]. 应用力学学报, 2005, 22(4):665-668. YIN Z P, HUANG Q Q, FU X J. Damage tolerance behavior of plates with variable thickness[J]. Chinese Journal of Applied Mechanics, 2005, 22(4):665-668(in Chinese).
[14] 臧伟锋, 董登科, 张海英. 机身壁板内压载荷强度试验方法研究[J]. 机械强度, 2015, 37(5):972-977. ZANG W F, DONG D K, ZHANG H Y. Research on test method of fuselage panel subjected to internal pressure load[J]. Journal of Mechanical Strength, 2015, 37(5):972-977(in Chinese).
[15] 王生楠, 张妮娜, 秦剑波. 整体机身结构纵向裂纹转折与止裂特性分析[J]. 西北工业大学学报, 2007, 25(4):472-477. WANG S N, ZHANG N N, QIN J B. Exploring engineering significance of turning of longitudinal crack in integral airframe structure[J]. Journal of Northwestern Polytechnical University, 2007, 25(4):472-477(in Chinese).
[16] 肖群力, 黄其青, 殷之平. 典型机翼整体壁板止裂特性分析及优化设计[J]. 机械强度, 2012, 34(1):92-96. XIAO Q L, HUANG Q Q, YIN Z P. Analysis of crack-arrest property and optimum design for typical stiffened panel[J]. Journal of Mechanical Strength, 2012, 34(1):92-96(in Chinese).
[17] 卢秉贺, 李萍, 赵继伟. 民用飞机后机身壁板控制失效模式和控制载荷工况分析[J]. 沈阳航空航天大学学报, 2012, 29(3):60-63. LU B H, LI P, ZHAO J W. Research on controlling load case and controlling failure mode for aft fuselage panel of civil aircraft[J]. Journal of Shenyang Aerospace University, 2012, 29(3):60-63(in Chinese).
[18] 张海英, 牛智奇, 董登科, 等. 疲劳裂纹扩展试验载荷谱加重方法研究[J]. 工程力学, 2015, 32(9):236-242. ZHANG H Y, NIU Z Q, DONG D K, et al. Research on load enhancement method for fatigue crack growth test[J]. Engineering Mechanics, 2015, 32(9):236-242(in Chinese).
[19] 龚志钰, 李章致. 材料力学[M]. 北京:科学出版社, 1999:187-191. GONG Z Y, LI Z Z. Material mechanics[M]. Beijing:Science Press, 1999:187-191(in Chinese).
[20] 郑晓玲. 民机结构耐久性与损伤容限设计手册(下册):损伤容限设计[M]. 北京:航空工业出版社, 2003:14-16. ZHENG X L. Durability and damage tolerance design handbook on civil aviation aircraft structure (Ⅱ):Damage tolerance design[M]. Beijing:Aviation Industry Press, 2003:14-16(in Chinese).
/
〈 | 〉 |