流体力学与飞行力学

前后缘型线同时可控的乘波体设计

  • 李永洲 ,
  • 孙迪 ,
  • 张堃元
展开
  • 1. 中国航天科技集团公司 航天系统发展研究中心, 北京 100094;
    2. 中国航天科技集团公司 西安航天动力研究所, 西安 710100;
    3. 中国航天科技集团公司 西安航天动力技术研究所, 西安 710025;
    4. 南京航空航天大学 能源与动力学院, 南京 210016

收稿日期: 2016-02-23

  修回日期: 2016-04-05

  网络出版日期: 2016-04-06

基金资助

国家自然科学基金(90916029)

Waverider design for controlled leading and trailing edge

  • LI Yongzhou ,
  • SUN Di ,
  • ZHANG Kunyuan
Expand
  • 1. Aerospace System Development Research Center, China Aerospace Science and Technology Corporation, Beijing 100094, China;
    2. Xi'an Aerospace Propulsion Institute, China Aerospace Science and Technology Corporation, Xi'an 710100, China;
    3. Xi'an Institute of Aerospace Propulsion Technology, China Aerospace Science and Technology Corporation, Xi'an 710025, China;
    4. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2016-02-23

  Revised date: 2016-04-05

  Online published: 2016-04-06

Supported by

National Natural Science Foundation of China (90916029)

摘要

提出了一种前后缘型线同时可控的乘波体设计方法,在马赫数可控的外锥形曲面基准流场中,结合流线追踪技术和混合函数,实现了椭圆前缘转椭圆后缘的乘波体设计,并在设计点(Ma=6.0)和接力点(Ma=4.0)对其进行数值仿真研究。前后缘同时可控的乘波体在型面剧烈过渡处产生了较弱的激波,出口两侧存在高温高压区,后部对称面附近的激波形状由圆弧变为平直线且出口处流场基本均匀,非常有利于与进气道匹配设计。另外,该乘波体具有较高的容积率和预压缩效率,附面层修正后的容积率为0.24,设计点时乘波特性较好,接力点时前部完全乘波,具有较高的升阻比,有黏条件下设计点和接力点的升阻比分别为2.54和2.41。此外,与给定前缘的乘波体相比,其升力、阻力、俯仰力矩和出口增压比都有明显增加,但是升阻比和出口总压恢复系数有所降低,在设计点无黏升阻比由3.56降为3.00。以上研究表明,本文的设计方法可行且更加灵活,拓宽了乘波体的选择范围。

本文引用格式

李永洲 , 孙迪 , 张堃元 . 前后缘型线同时可控的乘波体设计[J]. 航空学报, 2017 , 38(1) : 120153 -120153 . DOI: 10.7527/S1000-6893.2016.0112

Abstract

The design method of waverider with controllable leading and trailing edge is proposed in this paper. Based on the external conical basic flowfield with controlled Mach number distribution, the waverider with elliptical leading edge to elliptical trailing edge transition is designed utilizing the streamline tracing technique and blend function. Numerical simulation results at design (Ma=6.0) and relay point (Ma=4.0) indicate that the waverider with controlled leading and trailing edge produces a weaker shock on the acute transition surface. There is a high temperature and pressure section on both sides of the exit plane. The back shock shape near symmetric plane changes from circular arc to straight line and the exit flowfield is essentially uniform, which would be very favorable to match the inlets. Moreover, the waverider is of high volume ratio and precompression efficiency, and the volume ratio after boundary layer correction is 0.24. Also, it has good waverider characteristics on design point, and its forepart rides wave completely on relay point. The lift-drag ratio is high, which is 2.54 and 2.41 for the viscous design and relay point, respectively. In addition, comparison with the waverider with controlled leading edge indicates that the lift force, drag force, pitching moment and exit compression ratio are significantly increased, but the lift-drag ratio and exit total pressure recovery coefficient are decreased. On design point, lift-drag ratio decreases from 3.56 to 3.00 under inviscid condition. In conclusion, this design method is feasible and more flexible, and extends the scope of waverider.

参考文献

[1] ANDERSON J D, LEWIS M J. Hypersonic waveriders-where do we stand:AIAA-1993-0399[R]. Reston:AIAA, 1993.
[2] TINCHER D J, BURNETT D W. A hypersonic waverider flight test vehicle:the logical next step:AIAA-1992-0308[R]. Reston:AIAA, 1992.
[3] HAGSETH P E, BLANKSON I M. Current technologies for waverider aircraft:AIAA-1993-0400[R]. Reston:AIAA, 1993.
[4] 尤延铖, 梁德旺. 基于内乘波概念的三维变截面高超声速进气道[J]. 中国科学:技术科学, 2009, 39(8):1483-1494. YOU Y C, LIANG D W. Design concept of three dimensional section controllable internal waverider hypersonic inlet[J]. Science China:Technological Sciences, 2009, 39(8):1483-1494(in Chinese).
[5] SOBIECZKY H, ZORES B, WANG Z. High speed flow design using the theory of osculating cones and axisymmetric flows[J]. Chinese Journal of Aeronautics, 1999, 12(1):1-8.
[6] RASMUSSEN M L, JISCHKE M C, DANIEL D C. Experimental forces and moments on cone-derived waveriders for Ma=3 to 5[J]. Journal of Spacecraft and Rockets, 1982, 19(6):592-598.
[7] GOONKO Y P, MAZHUL I I, MARKELOV G N. Convergent flow derived waveriders[J]. Journal of Aircraft, 2000, 37(4):647-654.
[8] NONWEILER T R F. Delta wings of shapes amenable to exact shock-wave theory[J]. Journal of the Royal Aeronautical Society, 1963, 6(7):39-40.
[9] RASMUSSEN M P. Waverider configurations derived from inclined circular and elliptic cones[J]. Journal of Spacecraft and Rockets, 1980, 17(5):537-545.
[10] TAKASHIMA N, LEWIS M J. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration:AIAA-1994-0380[R]. Reston:AIAA, 1994.
[11] RODI P E. Non-symmetric waverider star bodies for aerodynamic moment generation:AIAA-2012-3222[R]. Reston:AIAA, 2012.
[12] 贺旭照, 倪鸿礼. 密切曲面锥乘波体——设计方法与性能分析[J]. 力学学报, 2011, 43(6):1077-1082. HE X Z, NI H L. Osculating curved cone (OCC) waverider:Design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6):1077-1082(in Chinese).
[13] CORDA S, ANDERSON J D. Viscous optimized hypersonic waveriders designed form axisymmetric flowfields:AIAA-1988-0369[R]. Reston:AIAA, 1988.
[14] LOBBIA M A, SUZUKI K. Experimental investigation of a Mach 3.5 waverider designed using computational fluid dynamics[J]. AIAA Journal, 2015, 53(6):1590-1601.
[15] 钱翼稷. 超音速轴对称有旋流特征线法的计算程序[J]. 北京航空航天大学报, 1996, 22(4):454-459. QIAN Y J. Computer program of supersonic axisymmetric rotational characteristic method[J]. Journal of Beijing University of Aeronautics and Astronautics, 1996, 22(4):454-459(in Chinese).
[16] 王卓, 钱翼稷. 乘波机外形设计[J]. 北京航空航天大学学报, 1999, 25(2):180-183. WANG Z, QIAN Y J. Waverider configuration design[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(2):180-183(in Chinese).
[17] 乔文友, 黄国平, 夏晨, 等. 发展用于高速飞行器前体/进气道匹配设计的逆特征线法[J]. 航空动力学报, 2014, 29(6):1444-1452. QIAO W Y, HUANG G P, XIA C, et al. Development of inverse characteristic method for matching design of high-speed aircraft forebody/inlet[J]. Journal of Aerospace Power, 2014, 29(6):1444-1452(in Chinese).
[18] LI Y Q,AN P, PAN C J, et al. Integration methodology for waverider-derived hypersonic inlet and vehicle forebody:AIAA-2014-3229[R]. Reston:AIAA, 2014.
[19] 李永洲, 张堃元. 基于马赫数分布可控曲面外/内锥形基准流场的前体/进气道一体化设计[J]. 航空学报, 2015, 36(1):289-301. LI Y Z, ZHANG K Y. Integrated design of waverider forebody and inward turning inlet based on external and internal conical basic flowfield with controlled Mach number distribution[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):289-301(in Chinese).
[20] DRAYNA T W, NOMPELIS I, CANDLER G V. Hypersonic inward turning inlets:design and optimization:AIAA-2006-0297[R]. Reston:AIAA, 2006.
[21] 王翼. 高超声速进气道启动问题研究[D]. 长沙:国防科学技术大学, 2008:27-30. WANG Y. Investigation on the starting characteristics of hypersonic inlet[D]. Changsha:National University of Defense Technology, 2008:27-30(in Chinese).
[22] 李永洲, 张堃元, 孙迪. 马赫数可控的方转圆高超声速内收缩进气道试验研究[J]. 航空学报, 2016, 37(10):2970-2979. LI Y Z, ZHANG K Y, SUN D. Experimental investigation on a hypersonic inward turning inlet of rectangular-to-circular shape with controlled Mach number distribution[J]. Acta Aeronautica et Astronamtica Sinica, 2016, 37(10):2970-2979(in Chinese).

文章导航

/