高超声速进气道自起动过程中流动非定常特性
收稿日期: 2014-11-26
修回日期: 2015-03-23
网络出版日期: 2015-10-27
基金资助
高超声速冲压发动机技术重点实验室开放基金 (STS/MY-ZY-2012-002-5)
Unsteady flow characteristics of hypersonic inlet during self-starting
Received date: 2014-11-26
Revised date: 2015-03-23
Online published: 2015-10-27
Supported by
Open Fund of Science and Technology on Scramjet Laboratory (STS/MY-ZY-2012-002-5)
采用非定常数值仿真方法研究了进气道自起动过程中流动的非定常特性,分析了内压段构型对非定常流动特性的影响。研究结果表明:进气道自起动过程中流动特性受内压段构型与来流条件影响。内压段压缩面肩部曲率半径越大,内压段面积收缩越缓,越易出现流场振荡现象,流场振荡越剧烈;型面设计参数β≤33°,能够避免流场振荡现象出现。合理设计进气道内压段型面能够控制自起动过程中流动的非定常特性。自起动过程中,流场出现振荡时随着来流马赫数增大流动依次经历不振荡状态→振荡状态→不振荡状态→起动状态,且流场振荡频率逐渐下降;对于未发生流场振荡的进气道,随着来流马赫数增大进气道依次经历硬不起动状态→软不起动状态→起动状态。
王卫星 , 郭荣伟 . 高超声速进气道自起动过程中流动非定常特性[J]. 航空学报, 2015 , 36(10) : 3263 -3274 . DOI: 10.7527/S1000-6893.2015.0079
The unsteady flow characteristics of hypersonic inlet and the influence of the internal compression duct geometry on them during self-starting are studied with the unsteady numerical simulation. The results show that the unsteady flow characteristics are influenced by the internal compression duct geometry and the free stream condition. The curvature radius of the shoulder of internal compression surface is larger, the contraction rate of internal compression duct is slower, and the flow oscillation occurs easily with stronger oscillation intension. However, the flow oscillation disappears when the curvature radius of the shoulder is small enough (the geometry parameter β≤33°). If the flow oscillation occurs during inlet self-starting, the oscillation frequency decreases and the no oscillation, oscillation, no oscillation and started mode appears one by one with the increase of free stream Mach number. And for the case that the flow oscillation does not occur during self-starting, the inlet suffers the hard-unstarted mode, soft-unstarted mode and started mode in sequence with the free-stream Mach number increasing.
Key words: self-starting; unsteady; flow oscillation; hypersonic inlet; numerical simulation
[1] Weiting A R. Exploratory study of transient unstart phenomena in a three-dimensional fixed-geometry scramjet engine, NASA TND-8156[R]. Washington, D.C.: NASA, 1976.
[2] Shimura T, Mitani T, Sakuranaka N, et al. Load oscillations caused by unstart of hypersonic wind tunnels and engines[J]. Journal of Propulsion and Power, 1998, 14(3): 348-353.
[3] Liang D W, Yuan H C, Zhang X J. Research on the effects of start ability of hypersonic inlet[J]. Journal of Astronautics, 2006, 27(4): 714-719 (in Chinese). 梁德旺, 袁化成, 张晓嘉. 影响高超声速进气道起动能力的因素分析[J]. 宇航学报, 2006, 27(4): 714-719.
[4] Ling G, Li Z F, Xiao F S, et al. Scale effects on the starting characteristics of a 2D hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3): 26-31 (in Chinese). 凌岗, 李祝飞, 肖丰收, 等. 一种二元高超声速进气道起动特性的尺度效应研究[J]. 实验流体力学, 2014, 28(3): 26-31.
[5] Wagner J L, Valdivia A, Yuceil K B, et al. An experimental investigation of supersonic inlet unstart, AIAA-2007-4352[R]. Reston: AIAA, 2007.
[6] Wagner J L, Yuceil K B, Clemens N T. PIV measurements of unstart of an inlet-isolator model in a Mach 5 flow, AIAA-2009-4209[R]. Reston: AIAA, 2009.
[7] Rodi P E, Emami S, Trexler C A. Unsteady pressure behaivor in a ramjet/scramjet inlet[J]. Journal of Propulsion and Power, 1996, 12(3): 486-493.
[8] Hawkins W R, Marquart E J. Two-dimensional generic inlet unstart detection at Mach 2.5-5.0, AIAA-1995-6016[R]. Reston: AIAA, 1995.
[9] McDaniel K S, Edwards J R. Three-dimensional simulation of thermal choking in a model scramjet combustor, AIAA-2001-0382[R]. Reston: AIAA, 2001.
[10] Tan H J, Sun S, Yin Z L. Oscillatory flows of rectangular hypersonic inlet unstart caused by downstream mass-flow choking[J]. Journal of Propulsion and Power, 2009, 25 (1): 138-147.
[11] Tan H J, Guo R W. Experimental study of the unstable unstarted condition of a hypersonic inlet at Mach 6[J]. Journal of Propulsion and Power, 2007, 23(4): 783-788.
[12] Tan H J, Li L G, Wen Y F, et al. Experimental investigation of the unstart process of a generic hypersonic inlet[J]. AIAA Journal, 2011, 49(2): 279-288.
[13] Li L G, Tan H J, Sun S, et al. Signal characteristics and prediction of unstarting process for two-dimensional hypersonic inlet[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(12): 2324-2331 (in Chinese). 李留刚, 谭慧俊, 孙姝, 等. 二元高超声速进气道不起动状态的信号特征及预警[J]. 航空学报, 2010, 31(12): 2324-2331.
[14] You J, Xia Z X, Fang C B, et al. Study of starting characteristics for mixed-compression inlet with instantaneous injection[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1590-1598 (in Chinese). 游进, 夏智勋, 方传波, 等. 瞬间射流作用下的混压式进气道起动特性研究[J]. 航空学报, 2011, 32(9): 1590-1598.
[15] Wang W X, Yuan H C, Huang G P, et al. Impact of suction position on starting of hypersonic inlet[J]. Journal of Aerospace Power, 2009, 24(4): 918-924 (in Chinese). 王卫星, 袁化成, 黄国平, 等. 抽吸位置对高超声速进气道起动性能的影响[J]. 航空动力学报, 2009, 24(4): 918-924.
[16] Yuan H C, Liang D W. Effect of suction on starting of hypersonic inlet[J]. Journal of Propulsion Technology, 2006, 27(6): 525-528 (in Chinese). 袁化成, 梁德旺. 抽吸对高超声速进气道起动能力的影响[J]. 推进技术, 2006, 27(6): 525-528.
[17] Ogawa H, Grainger A L, Bpyce R R. Inlet starting of high-contraction axisymmetric scramjets, AIAA-2009-7401[R]. Reston: AIAA, 2009.
[18] Wang W X, Guo R W. Numerical study of unsteady starting characteristics of a hypersonic inlet[J]. Chinese Journal of Aeronautics, 2013, 26(3): 563-571.
[19] Wang W X, Guo R W. Unsteady characteristics of hypersonic inlet below self-starting Mach number[J]. Journal of Aerospace Power, 2012, 27(12): 2733-2741. 王卫星, 郭荣伟. 低于自起动马赫数时高超进气道的非定常流动特性[J]. 航空动力学报, 2012, 27(12): 2733-2741.
[20] Schulein E. Optical skin friction measurements in short-duration facilities (Invited), AIAA-2004-2115[R]. Reston: AIAA, 2004.
[21] Izumi K, Aso S, Nishida M. Experimental and computational studies focusing processes of shock waves reflected from parabolic reflectors[J]. Shock Waves, 1994, 3(3): 213-222.
/
〈 | 〉 |